
PalCom External Report no 54: Deliverable 40 (2.3.2) page 1

IST-002057 PalCom

Palpable Computing:
A new perspective on
Ambient Computing

Deliverable 40 (2.3.2)
Runtime Environment

Due date of deliverable: m 36
Actual submission date: m 36

Start date of project: 01.01.04
Duration: 4 years

University of Aarhus

Revision: 1

Project co-funded by the European Commission within the Sixth Framework Programme (2002-2006)
Dissemination Level

PU Public PU
PP Restricted to other programme participants (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential, only for members of the consortium (including the Commission Services)

Integrated Project

Information Society Technologies

PalCom External Report no 54: Deliverable 40 (2.3.2) page 2

Contents

1 Executive Summary 8

2 Contributors 8

3 Notational Conventions 8

4 Introduction 9

5 Structure of this Deliverable 10

6 Pal-VM Component Model 12

6.1 Component Specification Files . 12

7 Bytecodes 14

7.1 Contexts . 14

7.2 Internal bytecodes . 15

7.3 Primitives vs. bytecodes . 16

7.4 Reading and writing fields of objects . 16

8 Processes 17

9 Scheduling 18

9.1 Cooperative Scheduling . 18

9.2 Preemptive Scheduling . 19

10 Native Calls 20

10.1 Memory objects . 20

10.2 Native calls . 20

10.3 Native Futures . 21

PalCom External Report no 54: Deliverable 40 (2.3.2) page 3

11 Language Interoperability 23

11.1 Interoperability Issues . 23

11.2 Code Example . 24

11.3 Method Name Mangling . 26

11.4 Basename Dispatch . 27

11.4.1 Type Checking with IDA . 28

11.5 External Class in Java . 28

11.6 Explicit Name-Mangling in Smalltalk . 29

11.6.1 Calling an Overloaded Method . 30

11.6.2 Overriding an Overloaded Method . 30

11.7 Interlanguage Inheritance . 30

12 Exception Mechanism 31

12.1 Interoperability with exceptions . 32

13 Resource Awareness 34

13.1 Resource API . 34

14 Reflection Mechanisms 36

14.1 Type annotation . 36

14.2 A two-part VM . 36

14.3 HMAPs . 38

15 Persistence 39

15.1 Migration . 39

15.2 Comparison with Object-based Migration and Persistence . 39

16 VM Performance and Size 41

16.1 VM size . 41

16.2 VM speed . 41

17 Languages and Compilers 44

17.1 Smalltalk/PalST differences . 44

17.2 Java/PalJ differences . 45

PalCom External Report no 54: Deliverable 40 (2.3.2) page 4

18 Debugging 47

19 Example Usages of Pal-vm 48

19.1 Use of Pal-vm In Active Surfaces . 48

19.1.1 Implementation . 48

19.1.2 Influence on the PalCom Open Architecture . 49

19.1.3 Placement of the Code . 50

19.2 Planned Use of the VM on AXIS Cameras . 50

19.3 Planned Use of the VM for FROBS . 50

20 Pal-vm Programming Model 51

20.1 Dual Execution Engine . 51

20.2 Pal-vm Out-of-the-box or Developer Use . 51

20.3 Programming Cycle . 52

20.3.1 JVM or Pal-vm? . 53

20.4 Language Restrictions . 54

20.5 Base Libraries . 54

20.6 Components and Interfaces . 54

20.7 Services . 55

21 Platforms and Dependencies 56

21.1 Operating System Dependency? . 56

21.2 Platform Dependencies . 56

22 Open Issues 58

23 Summary and Conclusion 60

23.1 Task 1: Support for resource and contingency management and code base for open-source 60

23.2 Task 2: Further specification of runtime and improved code base for application prototypes 61

A Code Base 62

A.1 PalCom CVS Root . 62

A.2 Scripts . 63

A.3 Restructurings and Toolbox Contributions . 65

PalCom External Report no 54: Deliverable 40 (2.3.2) page 5

B Bytecode Reference 67

B.1 halt . 67

B.2 push local . 67

B.3 push argument . 68

B.4 push field . 68

B.5 push block . 68

B.6 push constant . 69

B.7 push global . 69

B.8 pop . 69

B.9 pop local . 70

B.10 pop argument . 70

B.11 pop field . 70

B.12 send . 71

B.13 super send . 71

B.14 return local . 72

B.15 return non-local . 72

B.16 branch . 72

B.17 branch.identical . 73

B.18 branch.if.true . 73

B.19 branch.if.false . 73

B.20 swap . 74

B.21 dup . 74

B.22 call . 74

C Textual Assembler Reference 75

C.1 File name convention . 75

C.2 Assembly Language Syntax . 75

D Component Specification File Format 77

D.1 File name convention . 77

D.2 Grammar for Component Specification File . 77

PalCom External Report no 54: Deliverable 40 (2.3.2) page 6

E Binary Component Layout 78

E.1 File name convention . 78

E.2 Grammar for binary components . 78

E.3 Metainformation . 80

F Reflection Data 80

F.1 Field names . 80

F.2 Local variable names . 80

F.3 Source code files . 81

F.4 Source code line numbers . 81

G System Classes 83

G.1 CLASS Array . 83

G.2 CLASS ArrayList . 83

G.3 CLASS Block . 83

G.4 CLASS Block1 . 84

G.5 CLASS Block2 . 84

G.6 CLASS Block3 . 84

G.7 CLASS BlockMirror . 84

G.8 CLASS Boolean . 84

G.9 CLASS ByteArray . 85

G.10 CLASS ByteArrayBuffer . 85

G.11 CLASS ByteBuffer . 85

G.12 CLASS Channel . 85

G.13 CLASS CheckedArray . 85

G.14 CLASS Class . 86

G.15 CLASS Coroutine . 86

G.16 CLASS False . 86

G.17 CLASS HashEntry . 86

G.18 CLASS HashIterator . 86

G.19 CLASS HashKeyIterator . 87

PalCom External Report no 54: Deliverable 40 (2.3.2) page 7

G.20 CLASS HashKeySet . 87

G.21 CLASS HashMap . 87

G.22 CLASS HashValueIterator . 87

G.23 CLASS HashValues . 87

G.24 CLASS Integer . 88

G.25 CLASS Integer32 . 88

G.26 CLASS Link . 88

G.27 CLASS LinkedList . 88

G.28 CLASS Memory . 88

G.29 CLASS MemoryByteBuffer . 89

G.30 CLASS Method . 89

G.31 CLASS NativeFuture . 89

G.32 CLASS Nil . 89

G.33 CLASS Object . 89

G.34 CLASS PersistentComponent . 90

G.35 CLASS Process . 90

G.36 CLASS ReadableArray . 90

G.37 CLASS ReadableHashEntry . 90

G.38 CLASS ReadableHashMap . 90

G.39 CLASS RoundRobin . 91

G.40 CLASS Runner . 91

G.41 CLASS StackFrame . 91

G.42 CLASS String . 91

G.43 CLASS StringBuilder . 91

G.44 CLASS Symbol . 92

G.45 CLASS System . 92

G.46 CLASS Thread . 92

G.47 CLASS True . 92

G.48 CLASS Vector . 92

References 93

PalCom External Report no 54: Deliverable 40 (2.3.2) page 8

1 Executive Summary

This deliverable describes progress made in a number of key areas during months 25 to 36 of the project in work
package 3 (WP3) dealing with the specification and reference implementation of the PalCom Runtime Environ-
ment.

This report along with its accompanying implementation prototype constitutes an update of Deliverable 22 [23].

The objectives for the period were described in the updated Description of Work [32] for the project, and this report
documents, that substantial progress has been made with respect to these objectives.

2 Contributors

The following people have contributed to this deliverable:

• Peter Andersen, University of Aarhus,

• Jeppe Brønsted, University of Aarhus,

• Erik Corry, OOVM/University of Aarhus,

• Henrik Gammelmark, University of Aarhus,

• Michael Lassen, University of Aarhus,

• Ulrik Pagh Schultz, University of Southern Denmark/University of Aarhus,

• Jesper Honig Spring, Ecole Polytechnique Fédérale de Lausanne (EPFL),

Please direct comments to palcom2-wp3 at ist-palcom.org or directly to selected authors.

3 Notational Conventions

In what follows, the PalCom Virtual Machine is denoted pal-vm1, “PalVM” or simply the “VM”.

The code examples used in this document are written in Java [7] and Smalltalk [16]. When referring to the Java
method m of the class C we write C.m, whereas we write C>>m for the Smalltalk method m of the class C.

1The VM used to be called pre-vm-c, but was renamed to pal-vm as part of a general renaming of the tools in PalCom to have pal
prefix

PalCom External Report no 54: Deliverable 40 (2.3.2) page 9

4 Introduction

This Deliverable constitutes an update of Deliverable 22 [23]. This report along with its accompanying implemen-
tation prototype updates the specification of and describes the implementation of the PalCom Virtual Machine -
PalVM.

The deliverable describes progress made in a number of key areas during months 25 to 36 of the project in work
package 3 (WP3) dealing with the runtime environment for PalCom. The purpose if this report is twofold: On the
one hand to demonstrate the progress with respect to the objectives set out for WP3 for the last 12 months, and on
the other hand to function as a (partial) reference for users of the pal-vm and the accompanying tools.

The objectives for this deliverable were derived from the outstanding open issues listed in the previous WP3
Deliverable 22 [23, Section 14] and the feedback from the second PalCom Review.

The objectives are included in the updated Description of Work [32]. For convenience relevant parts are repeated
below.

Toolbox Contributions

1. Further specification of palpable runtime environment.
This will include defining what is to be handled at VM level, and what is to be handled as libraries or services on
a higher level. This task also focuses on defining what is to be part of the base class-libraries of a minimum Pal-
Com platform. This work relates to the scalability challenge, by determining the minimum devices supported.
Furthermore clarify what parts of the VM are platform independent and what parts need special attention on
specific devices. This work relates to the heterogeneity/coherence challenge in the focus on different basic exe-
cution platforms.
Improved Virtual Machine Reference implementation & supporting libraries
The reference implementation of the runtime architecture in the embedded PalCom VM will be refined in a
number of ways. This includes addressing a number of the still open issues listed in Section 14 of Deliverable
22, like improved process handling, improved support for preemptive scheduling (both these address construc-
tion/deconstruction at the service level as well as understandability for the programmer), improved exception
handling (necessary mechanism for a number of the challenges addressed by contingency handling, see below),
improved garbage collector, reduced memory consumption, optimisations (all three relate to scalability, espe-
cially when using very small devices).
The pal-vm further address heterogeneity vs. coherence in abstracting away different hardware platforms for
the programmer and allowing access to third-party (legacy) code (e.g. C code).

2. Support for Resource- and contingency management
A prototype implementation of the primitive mechanisms in the Runtime Environment for Resource- and Con-
tingency management Specification will be developed in cooperation with WP5. As can be seen from the WP5
work plan, this contribution provide basic mechanisms that address a number of the PalCom challenges, for
example visibility and inspection (of available resources and of erroneous situations), (resource-constrained)
construction and re-construction, automatic as well as user-controlled handling of errors, stability in the event of
changes caused by errors, understandability of what is wrong in contingency situations. See also item 5 below.

3. Continued support for networking
Continued low level VM support for the essential discovery- and communication components specified and
developed in WP4, including BlueTooth. As can be seen from the WP4 work plan, this contribution provide basic
mechanisms that address a number of the PalCom challenges, e.g. construction (by discovering what services and
resources are available, and establishing connections), visibility and inspection (of discovered devices, services,
connections), sense-making & negotiation (automation) in dealing with heterogeneous and changing network
topologies.

4. Support for introspection and reflection
A reflection mechanism, possibly based on the ”reflective channel” principle known from OSVM (from previous
PalCom partner OOVM) will be added to the VM specification and implementation. Furthermore, support for
HMAPs in the VM will be improved.

PalCom External Report no 54: Deliverable 40 (2.3.2) page 10

Toolbox Contributions, continued

5. Support for program construction, analysis and supervision
Continued support for program construction including improved compilers pal-j, pal-st and pal-beta
as well as the underlying pal-asm bytecode assembler. These tools address the challenge of construction (of
palpable programs) Support for program de-construction, analysis and supervision in the form of the pal-dis
bytecode disassembler and a (possibly remote) debugger for pal-vm. The language interoperability support
provided by the compilers and the VM address the heterogeneity/coherence PalCom challenge on the program-
matic level, as well as supporting increased code reuse and understandability (allows you to program in a more
familiar programming language, depending on your programming background).

6. Investigate possibility for offering palpable qualities on top of JVM
It will be investigated to what extent it is possible to add palpable qualities on top of JVM for those parts of a
palpable system, that do not run on the pal-vm. All above-mentioned challenges are potential candidates for
this, but most likely topics are means for resource visibility and inspection built as a library on top of JVM.

Tasks
Task 1: Support for resource and contingency management and code base for open source
Leading up to milestone 1, month 33, this task focuses on improving the VM and preparing the VM and the base class
libraries for the internal release of the open source code base. The improvements will focus on toolbox contributions
1-4 above. If time allows, toolbox contributions 5 and 6 may also be addressed. (IM33)
Task 2: Further specification of runtime and improved code base for application prototypes
Leading up to milestone 2, month 35, this task is twofold: One objective is dealing with issues arising from the internal
use of the open-source code base in order to mature this for the external announcement at IST-Event 2006. Another
objective is to provide input to WP2 with an updated specification of the Palcom runtime environment model. (IM35)
Task 3: Deliverable 2.3.2: Revised VM with resource and contingency support
This task deals with collecting the results of tasks 1 and 2. The result of this task will be the report that together with
the reference implementation of the VM constitutes Deliverable 2.3.2, end of month 36. (D2.3.2)

Deliverables
Month 36: Further specification of and reference implementation of PalCom runtime environment (report and proto-
type) (2.3.2).
As described in task 3 above, the purpose of this deliverable is to catch up on the development of the Palcom Runtime
model and reference implementation since the previous WP3 deliverable 22 in month 22. The report will describe
new parts of the model and implementation in detail but refer to deliverable 22 for the basic ideas. As described in
task 1, the major new toolbox contributions expected deal with runtime support for resource and contingency handling.
Almost all dimensions of the PalCom challenges are addressed here, cf. toolbox contributions 1-4 listed above: scala-
bility/understandability, heterogeneity/coherence, construction/deconstruction, visibility, sense-making & negotiation,
change/stability (each explained in detail in the toolbox contribution list).

Below it is outlined how the above objectives have been addressed for the last 12 months. The work in WP3
has focused on these objectives, but has also been driven by needs from other PalCom work packages that arose
throughout year 3 of the project.

5 Structure of this Deliverable

The rest of this document is structured as follows:

Firstly, in Section 6 it is described how the pal-vm implementation of the PalCom component model has been
updated and concretised.

In Section 7 the core concepts of the pal-vm and the execution environment of the bytecodes are described. The
details of the individual bytecodes supported are described in Appendix B.

In Section 8 the notion of a process is explained, and how processes allow for “sandboxing” of execution. This
is followed by Section 9 where threads and schedulers are documented, including how to work with hierarchical
schedulers and preemptive scheduling, hereby addressing this Toolbox Contribution 1 element.

PalCom External Report no 54: Deliverable 40 (2.3.2) page 11

Section 10 explains the mechanism for calling native code, e.g., C functions. This addresses the Toolbox Contri-
bution 1 element on third-party (legacy) code interfacing, and also relates to Toolbox Contribution 3, since most
support for networking is now done using this native interface.

Immediately following this, the related issue of VM internal interoperability between languages is described in
Section 11. This addresses the mechanisms needed to handle calls from one language to another, and subclassing
of classes written in another language.

Section 12 address the Toolbox Contribution 1 element on improved exception handling mechanisms now sup-
ported by the VM. This also relates to Toolbox Contribution 2.

Section 13 address the resource handling element of Toolbox Contribution 2 by detailing the primitive mechanisms
added to the VM to support first order resource handling.

Following this, Section 14 addresses Toolbox Contribution 4 by describing a design proposal for a split of the VM
into a non-reflective and a reflective part. Furthermore the support for HMAPs in the VM is documented.

Section 15 describes a possible serialisation design for VM processes, and how this might be used for migration
and persistence mechanisms.

In Section 16 it is argued why performance is important for the practical use of the VM and how this is addressed.
This relates to the Toolbox Contribution 1 elements on improved garbage collection, reduced memory consumption
and optimisation in general.

Toolbox Contribution 5 on program construction, analysis and supervision is addressed in the next two sections,
17 and 18, which describe the compilers targeting pal-vm, the language restrictions imposed by these, and the
(plans for) debugging facilities on the VM.

In Section 19, new usages of the VM within the project are described. The focus is on the Tiles application
prototype from Work Package 11.

Section 20 describes the programming model used when programming for the pal-vm.

Section 21 lists the execution platforms, that pal-vm currently runs on, and which are planned for the near future,
and specific platform dependencies.

Finally, Section 22 lists the major outstanding open issues, whereafter Section 23 summarizes the work done, and
compares it with the objectives.

A number of appendices are available from page 83 and onwards. These are meant as references for programmers
and compiler constructors targeting pal-vm:

Appendix A documents the code base contributions relating to pal-vm, and how to obtain them.

Appendix B details each bytecode, that the interpreter understands. This list was also included in the previous
WP3 deliverable [23], but has been updated to reflect the current VM.

Appendix C documents the textual format, that is understood by the PalCom bytecode assembler pal-asm.

Appendix D documents the textual Palcom Component Specification files understood by the source language
compilers, and Appendix E contains a grammar for the binary structure of component files.

Appendix F describes in detail the reflection data, that can be embedded into a PalCom component.

Finally, Appendix G gives an overview of the minimal base class library. This relates to the Toolbox Contribution
1 element of identifying a minimal base class library.

PalCom External Report no 54: Deliverable 40 (2.3.2) page 12

6 Pal-VM Component Model

We start this deliverable by describing in more detail the pal-vm implementation of the PalCom Component
Model previously given in Deliverable 22 [23].

A pal-vm component is a binary deployment unit for classes and data. A component contains executable code
in the form of classes (and methods), and metainformation. The persistent components are located as component
files on disk or accessible from the network in a format described in Appendix E. The pal-vm loads the persistent
component into its runtime equivalent (the runtime component), when creating a process.

The metainformation (also called reflection data) is used for a number for purposes:

• Guiding the loading process: Required metainformation informs the pal-vm as to how to load components
into a process. See below.

• Type checking: Interface Description Annotations (IDA) give type information on the classes and methods
in the component, which is currently used by the pal-j for type checking and name mangling. See sections
11.3 and 11.4.1.

• Debugging: Name information and line number information can be used to implement debugging and in-
spection functionality. See Appendix F.

The pal-j and the pal-st compilers generate binary components from a component specification file and a
collection of source files for the classes. The syntax of the component specification file is common for pal-j and
pal-st. See Section 6.1 below and Appendix D for further details.

The required metainformation is as follows:

• name: The name of the component.

• requires: A list of dependencies to other components. When a component requires another component, the
required component is given a local name in the name space of the requiring component.

• main class: The name of the main class in the component.

When a component is loaded into a process, first all required components are also loaded transitively, then a
singular instance of the main class is instantiated. Executing the component consist of calling the run method on
the singular instance of the main class.

PalCom components are specified using a Palcom Component Specification file (PCS), described below.

6.1 Component Specification Files

The Palcom Component Specification file (PCS) is used as input to compilers that compile class source files into
binary components. The component specification file contains the list of classes to be compiled into the binary
component, the name of the main class, and a list of components required by the component being specified. The
component specification files are currently used by the pal-j and the pal-st compilers.

A language may have its own constructs that are more natural for describing components than the component
specification files, and choose to use these constructs instead. In future versions of pal-j, the use of component
specification files may be replaced by constructs from the Java programming language. The Smalltalk language
does not have any construct for describing components, and therefore the component specification files will con-
tinue to be used for pal-st.

Examples of use can be found in the code base (see Appendix A) at palcom/doc/tutorials.

One such example from palcom/doc/tutorials/interop/basename/src/jbank/jbank.pcs is:

PalCom External Report no 54: Deliverable 40 (2.3.2) page 13

component jbank {
class JBank
class JHistoryAccount
mainclass JBank
requires "stbankaccount.prc" as stbankaccount
requires "java.lang.prc" as java.lang

}

This file specifies a component named, jbank, containing the classes JBank and JHistoryAccount. The
jbank component requires the Smalltalk component stbankaccount.prc and the standard Java component
java.lang.prc. The mainclass declaration specifies the class to execute an instance of, when creating a
process using this component, see Section 8. The mainclass declaration is optional for Java, since the pal-j
compiler can infer the main class automatically by finding a class with a static void main method. The
requires declarations assign a local name to the required components, which is the name used for these com-
ponents in the scope of the jbank component.

PCS files used as input to pal-j contain only classes described in Java source files and the .java extension
is automatically added to the class names. So in this example, compilation of jbank.pcs will automatically
compile the files JBank.java and JHistoryAccount.java. Similarly, PCS files for the pal-st compiler
reference only classes written in Smalltalk. All PCS files can reference components generated by any compiler
(pal-j or pal-st).

The PCS file syntax is defined in Appendix D.

PalCom External Report no 54: Deliverable 40 (2.3.2) page 14

7 Bytecodes

The virtual machine executes a set of binary bytecodes. A list of these bytecodes can be found in Appendix B.
These bytecodes are evaluated in an environment as described in Section 6 of Deliverable 22 [23], which includes
the self reference, locals and arguments, globals, literals, and static and dynamic links. Since then there have been
some changes in the organisation of the stack. The current organisation of the self reference, locals and arguments
in the stack frame is shown in Figure 1.

stack
growth

receiver

argument1

argument2

previous selfp

previous fp

prev. literals

byte code idx

localvariable0

localvariable1

localvariable2

stackposn0

stackposn1

current stack fram
e

call overhead
current selfp

current fp

current sp

:Stack

current methdself/this

Each stack frame consists of a
receiver, 0 or more arguments,
an overhead area used when
returning, the local variables,
and the evaluation stack.

Figure 1: Structure of the stack

Each method invocation results in the creation of a stack frame on the current stack as shown in Figure 1. There are
several stacks in the system (associated with different threads and coroutines). The stack is automatically resized
on method invocation if it is too small for the new stack frame. The stack object contains offsets that describe the
current frame pointer, fp, the position of the current receiver object, selfp, and the current stack pointer, sp.

7.1 Contexts

The bytecode set described in Deliverable 22 included several bytecodes designed to handle local variables not on
the stack. These bytecodes, which handled ’contexts’ were intended mainly for use in Smalltalk code. Since that
time, the main thrust of development has moved to Java code and so the context-oriented bytecodes were removed
from the specification.

Blocks are now implemented with a reference to the stack and the offset of the frame where local variables and
arguments from the context are available. This is illustrated in Figure 2a, where the block object is created, and in
Figure 2b, where the block object is used.

In the future it may be found more efficient to allocate the blocks on the stack itself, in which case they need only
an intra-stack offset to the context variables. In both cases it is a requirement that a block is not used (its method
is not executed) after the stack frame which is its context has been popped from the stack (returned from).

PalCom External Report no 54: Deliverable 40 (2.3.2) page 15

receiver

argument1

localvariable0

previous selfp

previous fp

prev. literals

byte code idx

current mthd

call overhead

current stack fram
e

stack
growth

receiver

argument1

argument2

previous selfp

previous fp

prev. literals

byte code idx

localvariable0

localvariable1

localvariable2

stackposn0

stackposn1

current stack fram
e

call overhead
current selfp

current fp

current sp
:Block

stack

self

fp

selfp

receiver

argument1

argument2

previous selfp

previous fp

prev. literals

byte code idx

localvariable0

localvariable1

localvariable2

stackposn0

stackposn1

self/this

context stack fram
e

call overhead
selfp in block

receiver of the current method (the

has access to context variables,
using the stack reference and the
frame pointer and self pointer offsets.

When the block is used it is the

value method of the block). It also

:Stack

fp in block

:Block

stack

self

fp

selfp

:Stack

current methd current methdself/this

and pop.field bytecodes (which reference the current self reference

When a block is created (using the push.block bytecode) it is populated
with a reference to the current stack, the current frame pointer (fp, an
integer) and the current self pointer (selfp, also an integer). It is also
given a reference to the current self object, which is used by the push.field

implicitly).

a) b)

Figure 2: Implementation of blocks

Violations of this rule would lead to system instability. In order to ensure that this cannot happen, there are certain
operations that are not permitted for blocks: They cannot be returned from methods, they cannot be thrown (as
exceptions) and they cannot be written into objects (including arrays and hash maps). In addition, they cannot
be written into local variables and arguments accessed through the context of a block. The VM contains checks
to ensure that these rules are not violated, and throws an exception if they threaten to be violated. In the OSVM
virtual machine[6] there were similar restrictions, but they were enforced by static typing in the compiler and name
mangling of methods that took blocks as arguments. The solution with static typing may be faster than the runtime
checks currently performed by pal-vm.

7.2 Internal bytecodes

In addition to the bytecodes documented in Appendix B, the current implementation of pal-vm has some internal
bytecodes. These are generated by the VM itself by bytecode rewriting, and are used for two main purposes:

Firstly, those primitives whose principal effects are on the state of the interpreter are simpler to implement as byte
codes than as conventional primitives (which use a function pointer lookup to call implementation code external to
the interpreter). The call bytecodes for these primitives are therefore overwritten with special internal bytecodes
when the method is loaded into the VM.

PalCom External Report no 54: Deliverable 40 (2.3.2) page 16

Secondly, some performance improvements have been obtained by bytecode rewriting. Common operations that
can be identified in the bytecode stream have been accelerated using special bytecodes.

These internal bytecodes are optional aspects of the current concrete implementation of the VM. They are not
available to the compilers, nor do the compilers need to have support for them. If the VM implementation changes
(as it has many times during the optimisation phase described in Section 16) then the compilers do not need to be
updated, as long as the external bytecodes remain constant. There are currently 48 internal byte codes.

7.3 Primitives vs. bytecodes

When designing the PalCom virtual machine specification, decisions had to be made whether to implement certain
instructions with a new bytecode or with a new primitive. Certain rules of thumb were followed:

• Primitives have a predetermined effect on the expression stack of the interpreter. (All arguments are popped,
the result is pushed.) If an instruction is to have a different effect on the expression stack then it must be
implemented as a bytecode.

• Instructions that are very rare, for example the instructions used to implement the name method in the
Component class will normally be implemented as primitives. This helps to keep the size of the interpreter
down, by not cluttering the bytecode set with rarely used bytecodes.

• The Smalltalk compiler pal-st is a very simple one, and there is a straightforward correspondence between
source code constructs and bytecodes. Instructions for which Smalltalk syntax exist are normally generated
as bytecodes, whereas other instructions are generated as primitives.

• If there is doubt as to whether an instruction should be implemented as a bytecode or a primitive then it is
normally implemented as a primitive. The VM can convert the primitive to a bytecode when the method
is loaded if this is convenient, whereas the opposite conversion is more difficult: Some bytecodes require
less space than a primitive call and do not use an entry in the literal table of the method. Thus, preferring
primitives to bytecodes gives the VM implementer most flexibility in designing the VM implementation.

• Once an instruction has been implemented in one way it normally stays implemented that way. This pre-
serves backwards compatibility and avoids the inconvenience of having to modify several compilers, an
assembler and a VM at the same time.

Most of the available primitives are used only in one place, in a particular method of a particular class from the
base library. This library, ist.palcom.base, is written in Smalltalk. The primitives can be used from other
languages by calling the methods of the base class. The exception to this rule is the Object throw primitive,
which throws an exception. This is emitted by the Java compiler when the Java throw keyword is used.

7.4 Reading and writing fields of objects

There are no bytecodes for reading and writing the fields of objects other than the current (this/self) object. See
Section 10 in Deliverable 22 [23] for the motivation for this.

PalCom External Report no 54: Deliverable 40 (2.3.2) page 17

8 Processes

The pal-vm executes one or more concurrently running processes. A process is an independent execution of a
PalCom runtime component, and contains the runtime component it is executing along with any required compo-
nent. A process is associated with a coroutine, which is an independent execution sequence using one of multiple
stacks in the VM.

Each process is isolated from other processes, meaning that the object graph of one process only shares immutable
objects with other processes. Therefore a process cannot make direct message-sends to objects in another process
or inspect the state of objects belonging to other processes. Instead, communication between processes uses
PalCom communications protocols or exchanges of data using the global HMAP. The communication protocols are
asynchronous in nature, being message based and not remote-procedure-call based. The PalCom communication
protocols are described in more detail in Deliverable 41 [29].

A process contains the following information:

• Main component: The component used to create the process.

• Required components: All components required by the main component including the main component
itself.

• Main class: The main class of the main component, see Section 6.

• Instance: A singular instance of the main class.

• Coroutine: A coroutine that executes the run method of the singular instance.

• Global variables: A map containing all class variables of the process.

• File descriptors: A list of file descriptors on which the process is waiting for a communication event.

• Timeout: A time interval after which the process wants to be re-scheduled.

A process is created using its main component in the following steps:

• All required components are loaded by loading required components transitively starting with the main
component. The required components are found using the requires meta-information. See Section 6.

• The main class is fetched from the main component, using the mainclass meta-information.

• A coroutine for running the process is created and subsequently scheduled in the main scheduler.

• The coroutine initialises the global variables of the process by sending an initialize message to all
components.

• The coroutine creates an instance of the main class.

• The coroutine executes the run method on the instance of the main class.

Classes are shared between processes, therefore the mutable parts of the classes must be implemented as variables
in the process. The mutable part of a class consists of class variables called “static fields” in Java and “class
variables” in Smalltalk.

The runtime component contains an interface that allows it to be scheduled by the main scheduler. The list of file
descriptors and the timeout value are information needed by the scheduler.

PalCom External Report no 54: Deliverable 40 (2.3.2) page 18

9 Scheduling

While the pal-vm executes one or more processes, each process schedules one or more threads. A thread is
part of a system of coroutines that are scheduled together according to some common mechanism. The difference
between a thread and a process is that the threads within a process share data and can communicate directly,
whereas processes cannot share data and have to communicate using communication protocols (or the global
HMAP, which supports limited data sharing).

Schedulers are responsible for giving CPU time to processes and threads and for taking care of the situation where
none of the threads and processes has anything to do.

Scheduling happens at two levels: the process level and the thread level. The pal-vm contains a scheduler for
scheduling processes at process level. This is a global scheduler that does not know anything about the threads
within the processes. Each process contains its own scheduler for handling the threads within the process at
the thread level. The application programmer has the freedom to implement his own scheduler at the thread
level, but it is expected that the usual case will be to use the default scheduler implementation provided in the
palcomthreads core library. This library contains a scheduler for handling PalcomThreads and implements
a common priority system as well as a number of common synchronization mechanisms.

The schedulers at both levels are implemented in libraries using common scheduling mechanisms in the pal-vm.

The scheduling mechanisms allow both cooperative scheduling as well as preemptive scheduling. In the following,
the scheduling mechanisms will be described by first describing the mechanisms for cooperative scheduling, and
then the mechanisms for preemptive scheduling.

9.1 Cooperative Scheduling

A process, as well as a thread, is associated with a coroutine that contains the actual execution stack of the process
and thread. Therefore scheduling processes and threads is performed by attaching and suspending the associated
coroutines using the attach() and suspend() methods. In the following, “attach process” or “attach thread”
means to attach the associated coroutine of the process or thread.

Simple cooperative scheduling attaches the coroutines in the scheduler’s queue in a round-robin fashion:

while not Q.isEmpty()
active = Q.next()
active.attach()

This scheduler attaches the coroutines in order and waits for the active coroutine to either complete its execution
(terminate) or suspend itself voluntarily. This is the basic form of cooperative scheduling, since a process/thread
will keep running exclusively until it suspends or terminates. This system can be unresponsive and lead to busy
polling. If a process is waiting for data on some file descriptor, it will either have to block all other processes until
data arrives or keep suspending itself until data is available.

To improve on this situation a select mechanism has been implemented. The select method, defined in the
pal-vm system class, takes as its parameters a list of file-descriptors and a timeout value. When a process calls
System>>select it thereby informs the system of the file descriptors on which it is awaiting input, and the
maximum time it wants to be delayed. When the scheduler is to attach a new process, it will choose a process that
either has a timeout value that makes it eligible for execution or is waiting for data on a file-descriptor on which data
is ready. If no such process exists in the queue, the scheduler calls the standard C library select function with
the union of all the file-descriptors of the processes and the minimum of the timeout values. When the C library

PalCom External Report no 54: Deliverable 40 (2.3.2) page 19

select function returns, at least one process will be eligible for execution. The C library select function also
suspends the calling operating system (OS) process and therefore serves as a mechanism for scheduling between
OS processes. If the VM is running on a system with no (or minimal) OS, then there is no need to yield control to
other OS processes. If the VM finds itself with no runnable threads or processes then it can save power by halting
the CPU. The CPU will go into a power-saving sleep mode from which it will be woken by an interrupt. The
interrupt may provide input to a thread or indicate a timeout.

Use of the System>>select method requires the PalcomThreads library to keep track of which file de-
scriptors the various threads in a process are currently waiting on. The list of file descriptors is maintained in the
PalcomThreads library by application threads making calls to the PalcomScheduler.enableIOEvent(
Channel c, int timeout) method.

This is done with the enableIOEvent method.

The use of native futures, described in Section 10.3, represents an alternative to the use of the System>>select
method. Native futures have the advantage of being usable for waiting on events other than the presence of data on
a file descriptor. In their current form they have the disadvantage of having no support for timeouts.

9.2 Preemptive Scheduling

The select mechanism enables communication on file descriptors without blocking other processes or performing
busy polling. There can still be unacceptable response times in the system however: A process that performs a long
calculation can block other processes that may need a guaranteed response-time. Therefore, an interrupt mecha-
nism has been implemented to support preemptive scheduling. The interrupt mechanism allows a scheduler to set
a timeout when attaching a process. After the supplied timeout has passed, the process is forced to suspend. This
is implemented by an OS level (or CPU-provided) interrupt-handler that sets a global flag. The interpreter checks
the flag whenever it handles a message-send or a backward-branch and can therefore force an active coroutine to
suspend. Since all code must perform a message-send or a backward-branch at finite intervals during execution,
this will ensure that the coroutine cannot run forever. It will take some time from the timeout occurs till the inter-
preter gets a chance to force the suspend, depending on the length of the forwards instruction sequences (sequences
of byte codes that do not perform message-send or backward branches). This delay is usually not a problem in
practice, but if it becomes a problem, the compiler can insert special check-for-timeout instructions in the forwards
instruction sequences to ensure guaranteed response-times.

Preemptive scheduling is currently only implemented at the process level. This is due to a current lack of VM-
level synchronisation mechanisms. Since processes do not share data, synchronisation is not needed between
processes. This is however an issue with threads – they share data and therefore synchronisation is needed. The
common synchronisation mechanisms implemented in the palcomthreads library only work in the cooperative
scheduling scenario. VM-level synchronisation can be implemented using the wellknown test-and-set instruction
that can be used as the basis for a wide range of synchronisation mechanisms.

PalCom External Report no 54: Deliverable 40 (2.3.2) page 20

10 Native Calls

Native calls are a mechanism for calling functions supplied by native libraries. Thus they are the interface to all
code written in languages that cannot be compiled to the pal-vm bytecode set.

On a modern operating system there are C library calls for determining the address of a native function, given its
name and the name of the library in which it is found. In POSIX these calls are called dlopen and dlsym. By
making use of these calls, the pal-vm can make native calls to any native function specified in the bytecodes of
an application, without the VM needing to have prior knowledge of that function.

Unfortunately, on simple operating systems the support for looking up the addresses of named functions may be
missing. Some small Linux variants (for example the one on the UNC20, see Sections 19 and 21) fall into this
category. For these platforms, the VM must be augmented with a list of the native functions that we wish to support
with native calls. When a new native call is added, the VM must be recompiled on these platforms.

The native interface contains the following elements:

• Memory objects: An object that allows allocation and freeing of memory external to the pal-vm heap.

• Native calls: A mechanism for calling native functions.

• Native future calls: A mechanism for calling native functions that immediately returns a future that will hold
the actual return value of the function when it becomes available.

10.1 Memory objects

Memory objects encapsulate an area of physical (native) memory that can be read from and written to. A memory
object can be used to store a C structure or a C++ object. They can also be used for memory buffers when using
native calls that require such buffers.

The underlying physical block of memory of a memory object is normally created by calling the native function
malloc and calloc. In this case it is the responsibility of the programmer to ensure that the native free
function is called once and only once when the memory object is not needed (using the Memory>>free method).
Since the pal-vm system does not have finalizers, this cannot be automated.

Though the garbage collector may move a Memory object, the memory that it refers to cannot be moved. This is
in keeping with what a C function expects from a memory area.

10.2 Native calls

Native calls use a correspondence between pal-vm types and C types for parameters and return values. The
conversions between these types are made very simple in order not to complicate the VM. It is not possible to
give a native function the address of an internal object in the VM. This means that there is no need to prevent the
garbage collector in the VM from moving or destroying objects that are referenced from native code or in native
data structures. In addition, there is never a need to synchronise the use of structures that are shared between native
code and Smalltalk/Java code. The following simple correspondences are supported:

• Integer corresponds to int

• String corresponds to char array

PalCom External Report no 54: Deliverable 40 (2.3.2) page 21

• Symbol corresponds to char array

• Memory is converted to and from any struct or allocated memory area

Any more complicated native ’objects’ or data structures must be handled by allocating native memory (using
malloc or calloc and free or similar) and then copying data in and out of these allocated areas.

Native calls are invoked by the methods:

• System>>nativeMemoryCall:with:resultSize:
for calling a function that returns a pointer to a memory area of known size, e.g., malloc. The return value
of the method call is a Memory object.

• System>>nativeIntegerCall:with:
for calling a function that returns an integer, e.g., time. The return value of the method call is an Integer or
Integer32 object.

• System>>nativeStringCall:with:
for calling a function that returns a null terminated char pointer, e.g., strerror. The return value of the
method call is a String object.

• System>>nativeVoidCall:with:
for calling a function that does not return a value, e.g., free.

The with: parameter is an array of arguments to the function call. The number of elements in the array must
match the number of arguments that the native function expects to receive. The arguments are converted using the
simple correspondences above.

10.3 Native Futures

Normally, the VM will be suspended when a native function is called, with no byte codes able to run until the native
function returns. Therefore the native call mechanism presented above is only usable for native calls that return
almost immediately. If the calls are being used to perform input/output then this means that only non-blocking
function calls can be used. These are calls that always return immediately, whether or not there is input ready to
be read, or buffer space available for output.

If a potentially long-running native method is to be called, for example one that performs a lookup of an Internet
host name in order to find an Internet address (IP-number), then a native future may be used. This has the advantage
that the VM is not suspended while the native function call runs.

The following methods:

• System>>nativeLongRunningIntegerCall:with:

• System>>nativeLongRunningMemoryCall:with:

• System>>nativeLongRunningVoidCall:with:

PalCom External Report no 54: Deliverable 40 (2.3.2) page 22

are similar to their non-long-running namesakes, but will perform the native call in a different operating system
thread. The VM will continue to run in the original operating system thread. While the native call is taking place,
they will yield, causing the scheduler to schedule other threads or processes in the VM. The effect of this is that
the native call can make blocking calls to the operating system. In the example of an Internet name lookup, the
native call is likely to send some UDP packets to a name server, then block the operating system thread, waiting
for responses to arrive on its UDP socket.

This works by using a NativeFuture object. This is a special object that has three methods. The method
NativeFuture>>available tells the scheduler whether or not the native call has completed. The methods
NativeFuture>>integerValue and NativeFuture>>memoryValue:size: may only be called af-
ter the available method has returned true, and are used to retrieve the return value from the native function
call. At the moment, the NativeFuture object is polled, whenever the scheduler is scheduling threads, but
a more sophisticated system, whereby the scheduler is informed asynchronously of the completion of the native
method could be implemented. Giving the scheduler more information about the progress of the native call would
improve the efficiency of the scheduler and work better with preemption, both described in Section 9.

Native futures require operating system support for threads. This is very widespread. If a version of the pal-vm
is developed that runs directly on the hardware without an intervening operating system (OS), then the pal-vm
would have to be augmented with support for threads sufficient to implement native futures. The support needed is
very simple: A similar addition to the OSVM virtual machine caused an increase of only 2kbytes in VM size[6].

PalCom External Report no 54: Deliverable 40 (2.3.2) page 23

11 Language Interoperability

As mentioned in the introduction, The language interoperability support provided by the compilers and the VM ad-
dress the heterogeneity/coherence PalCom challenge on the programmatic level. The pal-vm supports a broader
range of languages by:

• Being a dynamically typed VM, allowing direct mapping for both dynamically typed languages like Smalltalk
and statically typed languages like Java

• Requiring much less conformance of the high level languages than, e.g. the .NET Common Language
Specification. E.g. pal-vm languages are not required to support method overloading.

• Leaving static type checking and handling of constructs such as method overloading to the high level lan-
guage compilers.

As was demonstrated in Deliverable 21 [22], if a broad transparent language interoperability is wished for, a
common type system can be defined externally to the VM, and supported by the VM with very few changes.

The VM currently supports the programming languages Smalltalk [16] and Java [7] (BETA [18] is currently not
supported – this may change in the future).

11.1 Interoperability Issues

Code generated by the Java compiler (pal-j) runs together with code generated by the Smalltalk compiler
(pal-st) on the pal-vm. This raises a number of issues:

• Interlanguage calls: dealing with name-mangling and static type checking. The Java compiler generates
mangled names and the Smalltalk programmer needs a way to call Java code without knowing the mangling
scheme. On the Java side, the compiler needs type information on the Smalltalk code in order to do type-
checking. Since type-information is not supplied by the Smalltalk code, some mechanism is needed to
supply this. Interlanguage calls are described in the following sections.

• Interlanguage inheritance: Not only interlanguage calls, but also interlanguage inheritance is possible.
This is also further elaborated in the sections below, and summarized in Section 11.7.

• Java arrays: dealing with runtime type checking of Java arrays. Extra type information is needed in arrays
at runtime in order to enable runtime type checking when storing values in Java arrays. Interoperability with
Java arrays is described in Section 14.1.

• Everything-is-an-object: In Smalltalk and in the pal-vm everything is an object, but in Java, null and
simple types like integers are not objects. This interoperability issue is further discussed in Section 17.2.

• Exception handling: Some exceptions originating from Smalltalk code should be mapped to an exception
more appropriate for Java. For example, the Smalltalk #NilDoesNotUnderstand exception should be
mapped to a Java java.lang.NullPointerException. The handling of exception interoperabil-
ity is postponed until Section 12.1, after the description of the general exception handling mechanisms in
Section 12.

The following will describe the mechanisms implemented to support interlanguage calls. Other issues around
supporting multiple languages on one VM are discussed in Section 17. The handling of exceptions is discussed in
Section 12.

PalCom External Report no 54: Deliverable 40 (2.3.2) page 24

Three mechanisms are currently in use for interlanguage calls:

• Basename dispatch: An automatic mechanism in the pal-vm for allowing a call issued in one language
to be dispatched to a method defined in another language without requiring the compiler or programmer to
know the name-mangling schemes.

• External class: A mechanism for describing the interface of a Smalltalk class to the Java compiler, which
can be used by the programmer to supply type-checking information and name-mangling information about
Smalltalk classes to the Java compiler.

• Explicit name-mangling: A mechanism for using mangled names directly in Smalltalk.

The general “basename dispatch” mechanism is the latest implemented of these mechanisms, and it is intended
to replace the Java specific “external class” mechanism. The mechanism for explicit name-mangling is needed to
allow Smalltalk code to override/call overloaded Java methods.

11.2 Code Example

For the purpose of the description, a concrete code example will be used in the form of a simple bank account
implementation that involves both Java and Smalltalk classes to illustrate interlanguage calls. The example will be
used to first describe the name-mangling used by the compilers, and then the three interlanguage call mechanisms.

While the bank account example is not directly related to Palcom it does have the advantage of being simple and
familiar by virtue of its similarity to examples found in the object-oriented literature. The relationships between
the classes in the example are illustrated in Figure 3.

JBank

account
historyaccount

JBankAccount

balance
deposit: amount
withdraw: amount
interest: rate month: n

balance
deposit: amount
withdraw: amount
interest: rate month: n

STHistoryAccount

balance
deposit: amount
withdraw: amount
interest: rate month: n

JHistoryAccount

balance
deposit: amount
withdraw: amount
interest: rate month: n

STBankAccount

account
historyaccount

STBank

Figure 3: Class Diagram for an Example Illustrating Language Interoperability

The bank account example contains the following classes implemented in Smalltalk and Java:

• JBankAccount: Java implementation of a bank account class (see Figure 4).

• STBankAccount: Smalltalk implementation of a bank account class (see Figure 5).

• JHistoryAccount: Java extension of the Smalltalk bank account class (see Figure 6).

• STHistoryAccount: Smalltalk extension of the Java bank account class (see Figure 7).

• JBank: Java application that uses STBankAccount and JHistoryAccount (see Figure 8).

• STBank: Smalltalk application that uses JBankAccount and STHistoryAccount (see Figure 9).

PalCom External Report no 54: Deliverable 40 (2.3.2) page 25

package jbankaccount;
class JBankAccount {

private int balance;
public int balance() {

return balance;
}
public void deposit(int amount) {

balance += amount;
}
public void withdraw(int amount) {

balance -= amount;
}
public int interest(int rate, int n) { ... }

}

Figure 4: Java Bank Account Example

STBankAccount = (
| balance |
initialize = (

balance := 0.
)
balance = (ˆbalance)
deposit: amount = (

balance := balance + amount.
)
withdraw: amount = (

balance := balance - amount.
)
interest: rate month: n = (...)

new = (ˆsuper new initialize)

)

Figure 5: Smalltalk Bank Account Example

package jbank;
import stbankaccount.STBankAccount;
class JHistoryAccount extends STBankAccount {

private int count;
public void deposit(int amount) {

super.deposit(amount);
count++;

}
}

Figure 6: Java Extension of the Smalltalk Bank Account Class

PalCom External Report no 54: Deliverable 40 (2.3.2) page 26

STHistoryAccount = JBankAccount (
| count |
deposit: amount = (

super deposit: amount.
count := count + 1.

)
)

Figure 7: Smalltalk Extension of the Java Bank Account Class

package jbank;
import stbankaccount.STBankAccount;
public class JBank {

public static void main(String[] args) {
STBankAccount account = new STBankAccount();
account.deposit(100);
JHistoryAccount historyaccount = new JHistoryAccount();
historyaccount.deposit(200);

}
}

Figure 8: Java Application

STBank = (
run = (

| account historyaccount |
account := JBankAccount new.
account deposit: 100.
historyaccount := STHistoryAccount new.
historyaccount deposit: 200.

)
)

Figure 9: Smalltalk Application

11.3 Method Name Mangling

This section will describe the actual method name-mangling, used by the compilers, to aid the understanding of
the three interlanguage call mechanisms.

The compilers prepend a letter to the method names to show the origins of the methods. The Java compiler
(pal-j) prepends a ’J’ and the Smalltalk compiler (pal-st) prepends a ’S’. The number of colons in the gener-
ated names must be equal to the number of arguments of the methods (required by the pal-vm).

PalCom External Report no 54: Deliverable 40 (2.3.2) page 27

Smalltalk method names are of the form:

• balance becomes Sbalance

• deposit: becomes Sdeposit:

• interest:month: becomes Sinterest:month:

The Java compiler mangles the names in order to support Java’s overloaded method names. Therefore the parameter-
types and return-type becomes part of the mangled name.

• int balance() becomes Jbalance Integer

• void deposit(int amount) becomes Jdeposit V Integer:

• int interest(int rate, int n) becomes Jinterest Integer Integer:Integer:

The Java compiler places a number of colons in the mangled name corresponding to the number of parameters.

11.4 Basename Dispatch

In the basename dispatch mechanism, the pal-vm dispatches a method by truncating the method-names using
language specific rules to obtain a basename. These rules are currently hard coded in the pal-vm but the plan is to
implement a mechanism for supplying the language specific rules dynamically using either Smalltalk (preferable)
or a regular expression based description language.

When searching a class for a method to invoke given a method-name, the pal-vm will first do a local search in
the class for an exact match of the method-name. This search will only be performed in the class itself and not
in any super-classes to the class. If an exact match is not found, the method name is truncated to the basename
and a basename search is performed locally, comparing the basename to similarly truncated names of the available
methods, originating from a different language than that of the original method name. If no match is found locally,
the whole search is performed recursively on the super-class.

The Java names are truncated by removing the first ’J’ and stripping everything after the first underscore. Then a
number of colons are appended corresponding to the number of arguments.

• Jbalance Integer becomes balance

• Jdeposit V Integer: becomes deposit:

• Jinterest Integer Integer:Integer: becomes interest::

The Smalltalk names are truncated by removing the first ’S’ and stripping everything after the first ’:’. Likewise a
number of colons are appended to match the parameter count:

• Sbalance becomes balance

• Sdeposit: becomes deposit:

• Sinterest:month: becomes interest::

PalCom External Report no 54: Deliverable 40 (2.3.2) page 28

This scheme ensures that the truncated Java names matches the truncated Smalltalk names thus making interlan-
guage dispatch work.

In the JBank example, the deposit(100) call is translated to the name-mangled call, Jdeposit V Integer:.
Since this method is not defined in the STBankAccount class (where it is called Sdeposit:), the pal-vm
will do a base-name dispatch for deposit: instead, and correctly find the Sdeposit: method.

In the STBank example, deposit: 100 is translated to a name-mangled call, Sdeposit:, which is not
found in the JBankAccount class (here it is called Jdeposit V Integer:). A base-name dispatch for
deposit: will correctly find the Jdeposit V Integer: method.

The advantage of the basename mechanism is that basic non-overloaded interlanguage calls are trivially supported,
without breaking the support for overloaded methods within Java. Java overloading of methods is supported
internally in Java, since methods with the exact name from the same language are searched for first.

The limitation is that is not possible to call overloaded Java methods from Smalltalk. For this the mechanism called
Explicit Name Mangling is used, see below.

11.4.1 Type Checking with IDA

The basename dispatch mechanism alone is not sufficient to allow Java code to call Smalltalk code. The pal-j
compiler must be able to type-check code that makes calls to Smalltalk code. When type-checking the JBank
class, the compiler would like to verify that the STBankAccount class exists and contains a method deposit()
with the correct interface. The Interface Description Annotations (IDA) in the binary component file supply that
information to the pal-j compiler. The pal-st compiler generates these annotations as meta-information in the
component. Since Smalltalk is a dynamically typed language, the compiler cannot generate the type annotations di-
rectly from the Smalltalk source. Instead the type information is generated from special comments in the Smalltalk
source that must be written by the programmer. The format of the comments is very similar to Javadoc [13] com-
ments and these comments can be used both for generated the type information, and for generating documentation.
The comment for deposit: looks as follows.

"{ Deposits the specified amount to this account
@param amount int the amount to deposit

}"
deposit: amount = (
balance := balance + amount.

)

The formal part of the comment is “@param amount int”, which tells the compiler that the parameter,
amount, has the type, int. The type annotation comment is compiled into an interface description annotation by
the pal-st compiler. The rest of the comment is not required, but is just there to serve as documentation.

In effect IDA introduces a limited version of the in Deliverable 15 [21, Section 5.2.3] proposed Common Palcom
Type System (CPTS). The currently supported types, that can be used when annotating Smalltalk methods are the
primitive types int, boolean, and class names. As IDA matures, this CPTS is expected to be augmented.

11.5 External Class in Java

The external class mechanism makes use of an extended Java syntax to explicitly make the interface of a Smalltalk
class known to the pal-j compiler. The external class declaration for the STBankAccount class is listed below.

PalCom External Report no 54: Deliverable 40 (2.3.2) page 29

package stbankaccount;
external class STBankAccount {
STBankAccount() "initialize";
int balance() "balance";
void deposit(int amount) "deposit:";
void withdraw(int amount) "withdraw:";
int interest(int rate, int n) "interest:month:";

}

When pal-j encounters this declaration, it does not generate any code. Instead it uses the information to type-
check any uses of the STBankAccount class within the Java program. The external class declaration also
contains information on the actual names of the Smalltalk methods, which allows the compiler to use the actual
Smalltalk names instead of the name-mangled Java names. In the JBank example, the deposit(100) call is
thus translated to send Sdeposit: instead of send Jdeposit V Integer:.

This mechanism can also be used to map Smalltalk names to some completely unrelated Java name that fits better
with the design of Java libraries. The at:put: operation typical of Smalltalk lists can be mapped to void
set(int i, Object value), which is a more natural name for this operation in Java:

external class ArrayList {
...
Object set(int i, Object value) "at:put:";

}

The rename mechanism cannot be used to rearrange the order of the arguments – it can only be used to give the
method a different name.

The external class mechanism is exclusively used to make Smalltalk classes accessible to programs written in Java.
As mentioned above, the mechanism is expected to become unnecessary over time, when all Smalltalk methods
have been IDA annotated. The aliasing mechanism described above is also expected to be possible to support in
the IDA syntax.

11.6 Explicit Name-Mangling in Smalltalk

The explicit name-mangling mechanism is a syntax in Smalltalk that makes it possible to use a pre-mangled name.
This is a name that is not changed by the compiler, but used directly as-is in the generated byte-code. A pre-
mangled name is a name preceded by the “@” symbol. Such a name is used literally (stripped of the “@”) without
an “S” prepended.

The use of pre-mangled names makes it possible to call or override overloaded Java methods that cannot otherwise
be called or overridden using the basename dispatch method. The following PrintStream class contains the
overloaded method print(...), which is defined in two versions: a version taking an int argument and a version
taking a String argument.

class PrintStream {
void print(int value) { ... }
void print(String value) { ... }

}

The mangled names of these two print methods are:

PalCom External Report no 54: Deliverable 40 (2.3.2) page 30

• void print(int value) becomes Jprint V Integer:

• void print(String value) becomes Jprint V java lang String:

However the basename of both print methods is print:, which makes it impossible to distinguish between them
in Smalltalk. Calling the print: method will match both methods and the result would be to call a random print
method. Definining a print: in a Smalltalk subclass to PrintStream would have effect of overriding both
print methods.

11.6.1 Calling an Overloaded Method

To call an overloaded Java method from Smalltalk, the explicit name-mangling mechanism is needed. To call
print(int), we would like the compiler to call Jprint V Integer:. This is done by:

...
| stream |
stream := ...
stream @Jprint_V_Integer: 17.
...

It is also possible to call Java methods that takes more than one argument. Calling int interest(int rate,
int n), which has the mangled name Jinterest Integer Integer:Integer: is done by:

...
| account |
account := ...
account @Jinterest_Integer_Integer: 7 Integer: 12.
...

11.6.2 Overriding an Overloaded Method

To override an overloaded Java method in Smalltalk, the explicit name-mangling can be used similar to when
calling an overloaded method. A Smalltalk extension to the PrintStream class would need to define two
different print methods. This is done by:

StOutputStream = PrintStream (
@Jprint_V_Integer: value = (...)
@Jprint_V_java_lang_String: value = (...)

)

This will define methods that correctly correspond to the mangled names generated by the Java compiler.

11.7 Interlanguage Inheritance

As can be seen from the examples above, interlanguage inheritance is straightforward: There are no special con-
ventions for class names, and the VM does not care in which language a superclass is written.

The specification of a superclass is done by using the name of the superclass as declared, regardless of the declaring
language.

Special care must be taken, though, when overriding a method in a superclass written in another language, as
the preceeding sections have shown. Specifically Java method overloading may call for special mechanisms, as
detailed in section 11.6 above.

PalCom External Report no 54: Deliverable 40 (2.3.2) page 31

12 Exception Mechanism

In order to support the PalCom goals of resilience and contingency management it is important to have a way to
handle unexpected events. A well-established low level mechanism for signalling and handling unexpected events
in a program is provided by exceptions, as known from Java[7] and some dialects of Smalltalk[16].

The pal-vm supports throwing and catching of exceptions via a generic and highly flexible exception mechanism.
The mechanism allows any object to be thrown as an exception. On top of the support provided by the runtime
environment, it is possible to build abstractions in library code which extend the exception mechanism to satisfy
the requirements of specific languages.

The PalCom runtime environment implements the support for throwing and catching exceptions using variants of
two methods: Block>>catch: and Object>>throw. The semantics of the two operations is as follows:

• The method Block>>catch: evaluates the receiving block, but ensures that if an exception is thrown
during the evaluation, the argument block is evaluated as an exception handler with the caught exception as
an argument.

• The method Object>>throw throws the receiving object as an exception. As a result, the virtual machine
unwinds stack frames until it reaches an activation of the method Block>>catch:. Before evaluating
the handler block, the stack frame for the invocation of Block>>catch: is also unwound. The virtual
machine passes the exception object to the handler block as an argument.

• The method Block>>catchWithStackTrace: works like catch:, but constructs a stack trace,
which is provided to the exception handler block as an extra parameter. Constructing a stack trace object is a
fairly costly operation in terms of time and memory space and by having both a choice between this method
and the plain catch: method we are able to dispense with the construction of the stack trace in the cases
where it is not needed. It is our experience that the decision of whether to construct a stack trace object is
best placed at the point in the program where the exception is caught, rather than at the place where it is
thrown.

• The method Block>>catch:ifMatch: allows the exception handler to provide a type. When the VM
is unwinding stack frames in response to an invocation of throw it will skip catch:ifMatch: frames
where the thrown object is not an instance of a subtype of the type specified in the catch:ifMatch:
invocation. The alternative way to implement this (which was previously used) is for a compiler or program-
mer to generate code that tests the type of the thrown object in the exception handler block, and rethrows the
exception if it is not of the correct type. The new method is both faster and better at making the decision of
whether to generate a stack trace, since the VM is aware of which exception handler is the final destination
of the exception throw.

• The method Block>>catchWithStackTrace:ifMatch: works, as might be expected, like a com-
bination of catchWithStackTrace: and catch:ifMatch:. It allows a type to be specified for the
thrown exception, and also provides a stack trace as a parameter to the exception handler.

Idioms

To illustrate how the catch: and throw methods are used, we present the well-known Java idiom for exception
throwing and catching side-by-side with the equivalent idiom as implemented using the PalCom runtime environ-
ment support and expressed in Smalltalk:

PalCom External Report no 54: Deliverable 40 (2.3.2) page 32

try { [
... ...
throw new IOException(); IOException new throw.
... ...

} catch (Throwable e) {] catch: [:e |
// handle any exception "handle any exception"

}].

With the catch:ifMatch: method it is possible to implement type-specific catching of exceptions as follows:

try { [
... ...
throw new IOException(); IOException new throw.
... ...

} catch (IOException e) {] catch: IOException ifMatch: [:e |
// handle IO exception "handle IO exception"

}].

For Java exceptions, which are instances of subclasses of java.lang.Throwable, the methods that provide
the stack trace as an extra parameter to the catch block are not used (these are catchWithStackTrace: and
catchWithStackTrace:ifMatch:). Instead, the stack trace is constructed by the constructor of the object,
which calls the fillInStackTrace() method. This means that our runtime environment is compatible with
the traditional Java idiom of overriding fillInStackTrace() with an empty method to prevent costly stack
trace construction.

12.1 Interoperability with exceptions

The pal-vm supports throwing and catching of any object. This means that code written in any language that
includes exceptions can throw and catch whatever objects are suitable. In the case of Smalltalk, it is traditional
that Symbols (canonicalised strings) are thrown. In the case of Java, the language specification dictates that only
subclasses of the java.lang.Throwable class can be thrown and caught.

Problems arise when code from different languages is mixed. Since Smalltalk can handle thrown objects of any
class, and since Smalltalk does not have statically checked exceptions, there are no problems catching Java excep-
tions in Smalltalk code. However, there is no way to catch a Symbol in Java, and it was thought too onerous to
insist that all Smalltalk code should throw only subclasses of java.lang.Throwable. This would preclude
running any system without the java.lang component, something that is currently possible, and it would be a
solution that was obviously not extensible to other languages that might have differing requirements.

Instead, the static initialiser of a Java exception class (executed at the moment where a Java component is loaded
into a new process) can register classes or objects (including symbols) that should be translated into Java exception
objects. These registrations are compiled into a table of correspondencies between thrown exceptions and classes.

PalCom External Report no 54: Deliverable 40 (2.3.2) page 33

When the exception is thrown, the VM code that unwinds the stack, looking for a match between the type of the
exception and the type of the a clause must take the table of correspondencies into account.

As an example of this, the class java.lang.ArrayIndexOutOfBoundsException has a static initializer
that registers the symbol ArrayIndexOutOfBoundsException in the exception translation table, together
with an instance of itself as the target of the translation. This is done as following:

static {
Exception me = new ArrayIndexOutOfBoundsException();
me.nullStackTrace();
ist.palcom.base.System.instance().addExceptionMapping(
"ArrayIndexOutOfBoundsException", me);

}

The effect of this is to instantiate a prototype instance of ArrayIndexOutOfBoundsException. Like all
Java exception objects, the instance contains a stack trace generated at the point where it was created (in this case
the static initializer). This stack trace is deleted immediately, since it is not useful in this case. The instance is
then registered with the VM as a translation of the Smalltalk symbol ArrayIndexOutOfBoundsException.
This symbol is thrown by the Smalltalk Array class when an index argument is out of bounds.

When an index error occurs, this results in the throwing of the ArrayIndexOutOfBoundsException sym-
bol. When the symbol is thrown, the VM unwinds the stack, looking for a catch: method invocation that
will catch it. A Java catch clause is compiled to a catch: method invocation that contains a subclass of
java.lang.Throwable (see above). If the class in the catch: method is a superclass of the Java class
java.lang.ArrayIndexOutOfBoundsException then the stack unwinding of the VM will use the table
of exception correspondencies to translate the symbol into a Java exception. This is done by making a shallow copy
of the instance registered by the static initializer, and filling in the correct stack trace. These last steps, copying and
adding a stack trace, are necessary in order to provide the Java exception object with a correct stack trace. Such
stack traces are vital for debugging, since they indicate the exact point where the exception was thrown.

The net result of the above is that a Symbol is thrown by Smalltalk code, and if it is to be caught by a Java catch
clause it is translated first to an instance of the correct Java class.

The exception translation mechanism has been described here in terms of Java and Smalltalk, but we anticipate
that it will be usable almost unchanged for other languages.

PalCom External Report no 54: Deliverable 40 (2.3.2) page 34

13 Resource Awareness

In order to support Work Package 5 [25] the runtime environment has been augmented with some low level support
for resource management and migration. In particular, the VM has primitives and system library code to make the
following possible:

• Provide a count of the amount of memory that has been allocated on a system. By calling this method before
and after an operation, a resource management framework can measure the memory usage of that operation.
Note that this count includes memory that has been allocated and is now no longer in use (that is, the memory
could be reused after a garbage collection).

• Provide a signal to a scheduler that is triggered when a certain amount of memory has been allocated. The
signal is resettable by the scheduler. This allows a resource management framework to limit the memory
allocated by a process when performing a certain operation.

• Provide the above counter and signals based on the number of bytecodes executed rather than the number of
bytes allocated.

The memory allocation and bytecode execution data is currently collected for each coroutine. Fairly simple sched-
uler changes could make it possible to collect the data on a per-process basis. It is an open issue how memory
allocated and bytecodes executed by the system on behalf of a process should be accounted for.

Delivering allocation data net of subsequently freeable memory is possible, but determining which memory is
freeable can only be done by performing a full garbage collection. This is an unavoidably slow and costly operation,
which would be likely to make it unusable in practice.

Delivering allocation data that is both net of freed memory and accounted for on a per-process basis would require
separate per-process memory allocation heaps, and the resulting extra complexity and fragmentation issues are
likely to make this approach infeasible.

When an allocation or bytecode execution trigger level is reached, the scheduler is triggered, by means of a thrown
exception. The act of throwing the exception causes stack frames to be unwound and discarded. This means the
scheduler does not currently have the option of letting the coroutine or process continue with normal execution
after the trigger level has been reached. If it is found to be desirable, implementing the signalling as a specialised
variant of the suspend primitive would give the scheduler more choices on the further course of action.

It is also desired to provide available bandwidth estimates for communication channels. This is likely to be best
implemented in the communications subsystem with the aid of information from the driver software for the com-
munication channels. As such it is not a runtime environment issue.

13.1 Resource API

The memory counter and bytecode counter can be active or inactive. They can be made inactive by the Smalltalk
calls:

system nullMemoryCounter.
system nullBytecodeCounter.

or the Java calls:

ist.palcom.base.System.instance().nullMemoryCounter();
ist.palcom.base.System.instance().nullBytecodeCounter();

PalCom External Report no 54: Deliverable 40 (2.3.2) page 35

When they are active, the counters count downwards. If they reach zero, an exception is thrown. This is either
a #MemoryCounterReachedZero symbol or a #BytecodeCounterReachedZero symbol. Using the
techniques described in Section 11 they can be translated to Java exceptions.

To activate the counters, the following calls are used in Smalltalk:

system setMemoryCounter: anInteger.
system setBytecodeCounter: anInteger.

and in Java:

ist.palcom.base.System.instance().setMemoryCounter(x);
ist.palcom.base.System.instance().setBytecodeCounter(y);

If the intention is to measure, not limit the resource usage of a piece of code, then the counters should be set to
very high values, to avoid them reaching zero. In that case they can be read again with the Smalltalk calls:

memCounter := system getMemoryCounter.
bytecodeCounter := system getBytecodeCounter.

or in Java:

x = ist.palcom.base.System.instance().getMemoryCounter();
y = ist.palcom.base.System.instance().getBytecodeCounter();

This represents a very simple low level API on which more advanced abstractions can be built.

PalCom External Report no 54: Deliverable 40 (2.3.2) page 36

14 Reflection Mechanisms

Reflection has been defined as the capability of a system to inspect and possibly modify itself[19]. The basis of
reflection is access to reflective data. This reflective data can potentially be used to analyze, debug, modify and
optimize a system.

One advantage of basing a system on a virtual machine is that the virtual machine software has access to reflective
data in order to run. Thus, a VM naturally lends itself to a reflective system with inspectability and resilience.

14.1 Type annotation

Traditional VM-based object-oriented reflection as in Java and .NET is based on the existence of full metainfo for
all methods, parameters etc. in the compiled deployment units.

The pal-vm does not carry full metainfo in the components. Though some metainfo is available on methods and
fields, the types of fields and method parameter types are not included. In the case of components that were written
in Smalltalk, this is natural, since the types are dynamic and therefore cannot be determined by the compiler or
VM ahead of time. The actual objects that are used when the program is executed are of course all marked with
their types (classes and interfaces). Thus, the lack of type annotations cannot lead to unpredictable behaviour: an
exception will the thrown if the type assumptions of the programmer fail to hold at run time.

In the case of Pal-J code we also do not have type annotation on fields and methods. This is unusual for a virtual
machine executing Java-like code, but since Java is for the most part statically typed, this has surprisingly few
consequences: For the most part, the type annotations are used only by the compiler when generating code. At
runtime, the type annotations are not needed. The main place where type annotations are needed is for arrays, which
are partially dynamically typed in Java: Whenever an object is stored in an array, a virtual machine implementing
Java must check whether the object is of a type that is allowed for the given array. If this is not the case, the
VM throws an ArrayStoreException. In order to replicate this behaviour on pal-vm, arrays are marked at
creation (using a special primitive) with the type of their contents. Arrays that allow any objects to be stored in
them (including normally all arrays used in Smalltalk code) need not perform the check and consequently do not
need to store a type.

The advantages of not storing type annotation are twofold. Firstly it saves a lot of space, which can be at a premium
in palpable devices. Secondly it would make it much simpler to load and update code on a device: Since there are
no type annotations on methods and classes, they cannot become inconsistent when related classes and methods
are changed.

It is perhaps worth noting that type-overloaded duplicate method names in Java can be handled without needing
runtime type annotation of methods. The overloading is used by the Java compiler to rename methods, which
has the effect of removing duplicates. At runtime, only the renamed method names are present, and the type
information as such is not needed.

14.2 A two-part VM

For smaller devices, the quest for reduced memory usage is in conflict with a the storage of large amounts of
reflective metainfo in the system. However, having metainfo on the device is very attractive in terms of the support
for the interoperability, visibility and inspection qualities that it can give a system. This is especially true when it
is made accessible using simple, generic mechanisms like HMAPs (see below).

One solution to this conflict was pioneered by the OSVM system[6]. This was a ”reflective channel” solution,
characterised by:

PalCom External Report no 54: Deliverable 40 (2.3.2) page 37

:Larger device

:Nearby device

(sensor, camera)
:Small device

(PDA, smartphone)

Palcom node implemented on two devices

Palcom node implemented on one device

:Palcom node

Execution
Part of VM

Reflection
Part of VM

Execution
Part of VM

IDE

Assembly
browser

Reflection
Part of VM

etc.

Figure 10: Possible design for a two-part VM

• Using a small reflective interface on the device. The bulk of the reflective data was kept on the development
platform (or a reflection server device), a principle which could be called remote reflection.

• The reflective interface on the device had primitives for inspecting, updating, debugging and profiling the
device.

• The device itself did not include much support for generating (updating) code, but rather allowed the devel-
opment platform (or some other device) to upload new code through a secure transaction mechanism that
would ensure that the device internal state was not compromised by the update. Access to the updating
mechanisms from the outside was protected by an authorisation mechanism.

The disadvantage of this approach is the necessity of using a development environment or server to access the
device. The development environment is a large, graphical program, unsuitable for small devices and the server is
a heavy application designed to administer multiple devices and incapable of running on a smallish device. Thus
the device nodes are not in themselves in possession of the reflective metainfo needed to let them be visible and
inspectable.

Not all applications of the pal-vm will be on memory-constrained devices, but the challenges of heterogeneity
and scalability moves us to try to run the VM on large as well as small devices.

PalCom External Report no 54: Deliverable 40 (2.3.2) page 38

For the PalCom project we are considering a variation on the OSVM approach, where some of the support for
reflective operations is moved to a separate program that is closely coupled to the VM. In effect, the VM would
be divided into two parts, the execution part and the reflective part. These two parts would be tightly coupled in
terms of execution time (they are started and stopped together) and in terms of communication (they have extensive
implicit and explicit knowledge about each others’ internal state).

On medium sized PalCom devices (PDAs, stationary devices, in-vehicle devices with large amounts of memory,
for example 16Mbytes) the reflective and execution parts could run together on the same device. On small devices
like sensors or battery-powered sub-PDA devices where space is at a premium it might be possible to move the
reflective part of the VM to some other hardware that was nearby. The communication between the two parts of
the VM might be intermittent, so the execution part would have to be able to perform all normal operations without
contact to the reflective part. However, if an external user or service required access to the reflective interface that
would presuppose that some form of network connection existed. This network connection could also be used to
contact the reflective part of the VM. Thus the separation of the VM would be transparent to the users.

In this scenario, illustrated in Figure 10, we would no longer be limited by the very smallest devices in terms of
the reflective services we could provide. At the same time, devices of a certain size would be able to run totally
independently, while providing the full gamut of reflective features.

14.3 HMAPs

A novel approach for obtaining introspection (visibility), already examined by the Java based pre-vm described
in Deliverable 22[23], is to use HMAPs [20] to expose the internal state of components, either by adding a HMAP
data structure on top of the virtual machine, or by adding HMAP support directly in the virtual machine, the
latter approach allowing exposure of VM internal structures, such as methods, parameters etc.; see the ECOOP’05
Workshop Paper [34].

For the pal-vm we have a similar solution, with HMAPs implemented in the core libraries. However, expanding
the scope of the metainfo available through the HMAPs, though desirable in terms of visibility and inspectability
may conflict with the size constraints of small, palpable systems. Therefore it is possible that in a future redesign
of the VM and HMAPs we might require that the subtrees of the HMAPs that contain reflective data about the VM
only be accessed through the reflective part of the VM (as discussed above). By automatically forwarding HMAP
requests from the execution part of the VM to the reflection part of the VM this change could be made transparent
at those times where the two parts of the VM are in contact with each other. On larger devices like PDAs this
would be all the time.

PalCom External Report no 54: Deliverable 40 (2.3.2) page 39

15 Persistence

The design of HMAPs (see Section 14.3 for references) mandates that HMAPs can only contain simple objects
such as strings and integers. This, together with the simple, tree-based structure of HMAPs, means that it is
very simple to serialise and deserialise HMAPs into a text-based format like XML. More complex objects can be
mapped onto HMAPs in a variety of application-defined ways, where object structure is mapped to the HMAP’s
hierarchical structure, and the individual pieces of object state are converted to strings.

On nodes that have access to persistent storage (for example files on hard disk or flash memory) we can thus
use HMAP serialisation and deserialisation to present the programmer with a generic storage facility that is well
matched to the other uses we have for HMAPs: transparency and reflection. The use of a standard structure allows
generic tools to inspect, present and modify the data without having to be aware of the exact applications and
versions that are writing and reading data.

A style of programming where data that is intended to persist over a reasonable time period is stored in the HMAPs
can facilitate remote inspection, transparency and simplify file-based persistent storage. If this model is followed,
it implies that non-HMAP objects are used mainly for intermediate results and short-lived data.

15.1 Migration

If persistent data is always stored in the HMAPs, we can support a simple but powerful form of process migration.
Since services are implemented in processes, this implies that services could be migrated too. Migration could be
achieved by pausing a process, serialising the HMAPs, deserialising the HMAPs on another node, then restarting
the process on the other node. In order to restart the process, the same components would be needed as had been
used on the first node. Since the component files are device independent, there should be no difficulties with
compatibility on the new device.

Such a migration model, which is not yet implemented, would need to be integrated with the resource management
subsystem described in Deliverable 42[30] and with the service management framework described in Deliverable
39, Section 5[27]. The resource management subsystem is needed to determine the policy and make the deci-
sion on whether and where to migrate applications. The service management framework needs to define what it
means to ’pause’ an application, and probably needs to include mechanisms to simplify adding and inspecting the
information in the HMAPs.

If services are to be migrated, this also places requirements on the network protocols, which would need to be able
to handle communication with the service in its new location. Network protocols are documented in Deliverable
41[29].

15.2 Comparison with Object-based Migration and Persistence

Processes on the pal-vm virtual machine are defined in such a way that their object graphs are disjoint. This
means that no process contains a reference to an object in another process. All processes may hold references to
immutable system objects, but such immutable system objects may not contain references to process data. Since
they are immutable it is also not possible for a process to add a reference to its own data to such an object or to use
such an object to gain access to the data in another process. HMAPs allow a safe way for process to exchange data
without their object graphs becoming entangled. This is described in more detail in Section 8.

This process separation constraint mirrors that of protected multitasking operating systems. It is important in order
to prevent program instability in one process from spreading to another process. However, it also means that it
would be theoretically possible to serialise all objects in a process, providing a complete persistent or migratable

PalCom External Report no 54: Deliverable 40 (2.3.2) page 40

data set for a running process. Such a facility, storing all transitively reachable objects, would be somewhat more
heavyweight in terms of implementation effort and space requirements.

A transitive object storage facility has the advantage of being simpler for the service programmer to use than
HMAP-based persistence facilities: The programmer would not have to separate his data into persistent and tran-
sient portions, and would not have to deal with the less direct access to data that HMAPs offer when compared
with simple objects with fields and inter-object references.

On the other hand, the automatic nature of an object-based persistence facility can be the source of disadvantages.
Experience with a similar system in BETA[17] shows that it is easy to accidentally save or migrate too much data,
as the storage system blindly follows inter-object references into data that need not be stored. In addition, loading
such persistent data into a newer version of an application, where objects may have changed size, or program
changes may have altered the interpretation of data in objects may produce unexpected results.

The process separation principle has as its prime motivation the desire to ensure process stability. However, it is
interesting to note that the principle also opens the way to an alternative implementation of persistence, based on
the object graph of a process. Nevertheless, it is unlikely that we will have time to implement a persistence system
based on this.

PalCom External Report no 54: Deliverable 40 (2.3.2) page 41

16 VM Performance and Size

The challenges of PalCom include invisibility and construction/deconstruction. To meet this challenge, we aim to
build our systems out of small building blocks that can be hidden in the environment (but visible in some form,
when needed), and that can be composed together in flexible ways in order to build larger systems. In order for
this to be possible the systems must be small, both in size, cost and power requirements. A simple way to save
power is to run a system at a lower speed, so it is also important that the software run as fast as possible on a given
hardware with a given CPU speed.

In order to facilitate the development of prototype applications for PalCom it is also important to have a reference
implementation that exhibits these qualities of speed and economy of space – see, e.g., Section 19.

16.1 VM size

As mentioned in deliverable 22[23], the goal for the pal-vm is to be able to run on devices with as little as
256kbytes of memory. There are a number of designs decisions, that will help keep the size of the running VM
low. These were detailed in deliverable 22.

As was also mentioned in deliverable 22, the Java based pre-vm was not made for efficiency and compactness,
and did not in any way meet these size expectations. The currently used and developed pal-vm is the version that
is attempting to meet these requirements. The current implementation, when compiled for the ARM processor,
takes 124360bytes, or around 122kbytes (as determined by the size program on the .o files that make up the
compiled VM). In order to run on embedded devices with Linux the VM must be linked to the system libraries.
When this is done, the current size is 303944bytes or 297kbytes (this figure is for the VM version that is compiled
to run on the ARM-Linux based Axis cameras). It is to be expected that this figure can be reduced by reconfiguring
the linker, and it would be considerable lower for a VM that was designed to run directly on the hardware without
an operating system. Nothing in the VM design precludes creating such a version of the VM, but it is currently
unclear whether any of the PalCom prototypes require such an effort.

The runtime memory consumption of the VM is still too high. One reason for this is that the garbage collector
does not yet implement older generations of the object heap, which means that the two first generation heaps,
or semispaces, must be large enough to hold all live objects. At the last measurement, 2006-12-07, the heap
needed to be 452kbytes large to run the simple BenchPress benchmarks (apart from the Storage benchmark,
which allocates a large amount of memory as part of its operation). This figure was reduced from 793kbytes in
the summer of 2006 by a series of efficiency improvements and program changes. It is to be expected that, if
necessary, the figure could be reduced further with the help of changes in the structure of basic objects in the VM
and a multi-generation garbage collector.

The core libraries, including the communication libraries are still under development. Since a typical PalCom
node will need these libraries, the size of the libraries, their memory use, and the size of any utility libraries they
use will be an important factor in determining the effective minimum memory footprint of a device based on the
PalCom architecture. Precise measurements of the space requirements cannot yet be made, since the specification
and implementation of the communication protocols is ongoing. See Deliverable 41 for details[29].

16.2 VM speed

The initial proof-of-concept VM, pre-vm, written in Java, was abandoned. The PalCom VM specification was
then reimplemented in the pal-vm, written in C++. One of the main reasons for this move was in order to
improve the execution speed. Our measurements on the small BenchPress benchmark suite indicated that the
speed improvement on the first versions of the pal-vm was of the order of a factor of 3 in throughput, and a

PalCom External Report no 54: Deliverable 40 (2.3.2) page 42

Figure 11: Performance of VM over time

relatively simple change to the way primitive operations were implemented brought this up to a factor of more than
5 relative to the pre-vm.

However, the performance of the pal-vm was still not satisfactory for those prototypes that were based on ARM
processors. The groups working on these prototypes, which include all PDA-based devices, all UNC20-based
devices (for example the tiles) and the Axis Cameras reported that performance was not acceptable, see Section 19.
Therefore we had a period of profiling, analysing and measuring the VM speed, using our BenchPress benchmarks.

For comparison purposes, we translated the BenchPress benchmarks into Java (from Smalltalk), taking care to
use ’natural’ constructs, in order that the benchmark code should reflect typical use of the Java language. This
enabled us to run the benchmarks using the industry standard javac compiler and the HotSpot VM[1]. These
are standard Java tools, released by Sun Microsystems.

The HotSpot VM is is not intended for embedded use, but runs on desktop machines. Our tests on the pal-vm
were therefore also performed on a desktop machine. However, we found that the performance improvements were
generally seen both on desktop and embedded targets. Since pal-vm is interpreter-based for compactness and
simplicity, we compared ourselves with the interpreter built into HotSpot. This interpreter is a highly optimised
commercial product that has been in very widespread use and continual development for over a decade.

The VM was built in a version that could generate profiling information at the level of C++ source code lines. In
addition, a version of the VM was augmented with tools for profiling byte codes executed on a Java or Smalltalk
source code level. Performance was initially analysed mainly for the Smalltalk version of the benchmark, com-
piled with the PalCom Smalltalk compiler pal-st. Later performance work also used the Java version of the
benchmarks, compiled with the PalCom pal-j compiler.

PalCom External Report no 54: Deliverable 40 (2.3.2) page 43

By analysing which parts of BenchPress had the most problematic performance, and by using profiling information
at several levels we were able to initiate an iterative process, concentrating on the areas that appeared the most
promising for a performance boost. See Figure 11 for the performance improvements we made. After each
improvement to the VM the performance was tested on code compiled with pal-st. Performance was not tested
as frequently on code compiled with pal-j. This is the reason that there are not so many steps in the graph
for pal-j. No development occurred on the Java-implemented pre-vm or the version of pal-st used for
pre-vm. This is why the pre-vm performance does not change over time. No major changes occurred in Sun’s
javac or HotSpot software in the time period in question, therefore the performance for these tools is also
constant.

The current performance of the PalCom tools is around 50% of that of the Sun tools. As the main focus of the
PalCom project is not performance, this is good enough that we do not expect speed to impede the progress of
development of prototypes that use our tools.

PalCom External Report no 54: Deliverable 40 (2.3.2) page 44

17 Languages and Compilers

The virtual machine implemented by pal-vm is currently targeted by two compilers and an assembler (described
in Appendix C). The first, pal-st compiles a dialect of Smalltalk we shall call PalST and generates component
(.prc) files. The second, pal-j compiles a language we shall call PalJ, which is very similar to Java. It also
produces .prc files.

In general we strive to be as compatible as possible to Java and Smalltalk, at the source code level. This enables
us to use existing code in the PalCom project, and also enables the dual execution platform model, described in
Section 20.

The differences between PalJ and Java and the differences between standard Smalltalk, and PalST are motivated
by the following factors:

• Size: The requirements of palpability place constraints on the size of devices, which translate into memory
space constraints for the VM. The constraints cannot be met without some incompatibilities and missing
features relative to the standard languages. See also Section 16.1.

• Simplicity: Keeping the system simple helps keep it understandable, which helps make it inspectable and
constructable/deconstructable. It also cuts down on implementation effort.

• Speed: Features that have proved costly to implement in terms of execution speed have been omitted. See
also Section 16.2.

• Multiprocessor: Language features designed to improve performance on multiprocessor devices are not
relevant to palpable devices, which are invariably single-processor, and are likely to continue to be so, given
the constraints of cost, power consumption and heat production that are typical of palpable devices.

• Interoperability: Some changes have been made to the languages in order to accommodate running code
from more than one language in the same virtual machine. See Section 11 for more details.

17.1 Smalltalk/PalST differences

Standard Smalltalk[16] has two different classes for characters and integers. In PalST and pal-vm there is only
one class, called Integer. This makes the VM simpler. Experience suggests that this is not a problem in practice.

Standard Smalltalk does not define a syntax for class or method definitions. Method bodies are typed directly
into a running Smalltalk virtual machine, which conventionally includes a compiler. (A snapshot recording of the
internal state of the Smalltalk VM can be saved on disk and restarted at a later time.) Therefore there is no standard
Smalltalk syntax with which to be compatible. PalST defines its own format.

The syntax of the body of a Smalltalk method is very simple. There are no big differences between the syntax of
PalST and standard Smalltalk. Since characters are integers in pal-vm the dollar-based character constant syntax
creates an integer.

For simplicity there are no floating point numbers in pal-vm and so the syntax for immediate floating point
numbers is not supported in PalST. Likewise, there is no support for arbitrarily large integers. Integers in the
pal-vm are 32 bits and arithmetic operations are on signed two’s complement 32 bit numbers with no exceptions
for overflows. This aids interoperability as it conforms to standard Java behaviour for integers, and it is also simpler
than supporting arbitrary precision arithmetic.

The pal-vm does not include a compiler and so code must be compiled ahead of time. This is unusual for a
Smalltalk implementation. Instead, there is support for reflective operations with the aid of external programs. In

PalCom External Report no 54: Deliverable 40 (2.3.2) page 45

particular, the VM has support for loading new code at run time from component (.prc) files. This keeps the VM
small and simple. Likewise, there is no support for adding a method to a class and other changes to classes. This
would conflict with the aim of making classes read-only, which is important to keep the VM small when several
processes share access to the same classes. See Section 8 for more details.

Although a method is a first class object (in keeping with Smalltalk tradition), the pal-vm does not in general
make it possible to obtain the name of a running method or the methods in a class in the form of a printable string.
This would preclude the compression or integer-encoding of method names, which (though it is not currently done)
would help keep the memory size of the running program down. Alternative methods to get method names (for
example for debugging) are detailed in Section 18.

Standard Smalltalk has two different kinds of static variables. Class variables are visible to subclasses. The
superclass and subclasses share access to the same static variables. On the other hand class instance variables are
inherited by subclasses. Each subclass gets its own copy of the class instance variables from the superclass, and
these class instance variables are independent.

In pal-vm the variables of superclasses are not visible or inherited by subclasses. Access to the variables of
superclasses is available only through getter and setter methods. This applies both to instance variables and class
(static) variables. Because of this, the distinction between class variables and class instance variables disappears.
The restriction on access to the variables of superclasses is present in order to decouple the representation of a
class and its subclasses. This makes it simpler to introduce incremental update and versioning features to the VM
at a later date, since program changes are likely to be isolated to a smaller number of methods or classes.

Each process has its own set of class variables in the pal-vm. Standard Smalltalk does not have separate pro-
cesses, so the question of whether they are shared between processes does not arise.

17.2 Java/PalJ differences

Instances of the ’primitive types’ (int, boolean, etc.) in Java are not real objects, having no methods and no
inheritance hierarchy. For situations where the programmer needs a primitive instance that is a real object, there is
a set of real classes that mirror the primitive types. These are java.lang.Integer, java.lang.Boolean,
etc.

In pal-vm everything is an object. Though integers/characters are efficiently implemented this is transpar-
ent in the programming model, where they can be used just like any other objects. This means that the di-
chotomy between int and java.lang.Integer is not necessary. Therefore in PalJ both the int type and the
java.lang.Integer class are mapped to the basic Integer class from the base library. This is both simple
and helpful for interoperability.

In practice this does not lead to much incompatibility with Java, since the difference cannot be detected by a
Java programmer. The static Java type system, enforced by the pal-j compiler, ensures that an int is never
encountered where a java.lang.Integer was expected and vice versa. It is only when writing code that
interoperates with code written in other languages (ie. Smalltalk) that the difference can be detected with a suitably
constructed example.

Some packages and classes that are required to be present in a standard Java environment are not present in the
PalCom system. See Appendix G for more details. This is to keep the system small and simple. One of the missing
packages is the java.lang.reflect package. This is because we handle reflection differently in the PalCom
system to the way it is handled in Java. See Section 14 for more details.

In standard Java, a lock can be taken on any object. In the PalCom system we handle concurrency and threads with
the PalcomThreads library, and so this operation is not available in this form. The omission of this operation
also has the effect of making the VM implementation smaller and simpler.

PalCom External Report no 54: Deliverable 40 (2.3.2) page 46

Similarly, in standard Java a hash code can be produced for any object using the static method on the System class,
identityHashCode(Object). A call to this method is also the default implementation for the hashCode()
method on java.lang.Object. Once a hash code has been produced using this method, it is required never to
change for that object. This makes it difficult to keep the per-object space overhead low.
The initial Java implementations had a non-moving garbage collector, which meant the address of the object could
not change, and the address could be used to generate the hash code with no overhead. However, it is gener-
ally agreed that an exclusively non-moving garbage collector is less efficient than a moving garbage collector and
has unresolvable memory fragmentation issues, so that course is no longer feasible when implementing a Java
VM. There are complex solutions that involve only using space for the hash code of those objects where the hash
code has been demanded by the program, but the complexity of such solutions works against our aim to keep the
pal-vm simple.
In the pal-vm there is no identityHashCode() method. Only those classes that explicitly override the
hashCode() method have a fixed immutable hash code. This includes strings and integers, since they can
generate a fixed hash code from their (immutable) contents. But the base Object class does not have this oper-
ation, since that would require space in every object to store a hash code. It is possible to add a hashCode()
operation to any class that needs it. This may be done by reserving space in the object for a hash code, but ex-
perience with Java shows that most objects in a system do not ever have their hashCode() method called. If
the hashCode() method is called on an object whose class has not overridden the hashCode() method then a
#HashCodeMethodNotOverridden exception will be thrown.

Thus, due to hash code and locking differences, the pal-vm has a per-object overhead of 4 bytes, whereas most
Java VMs have a per-object overhead of 8 bytes. Since this overhead is encountered in every single object of a
system we think this is a significant contribution to keeping the PalCom system small.

The null reference is implemented as a real object in pal-vm. This object is the singleton instance of the Nil
class, usually called nil in Smalltalk. Since Nil inherits from Object, the base class at the top of the inheritance
hierarchy, this means that all the methods from Object are available for null references. Thus, where a Java
program would throw a NullPointerException when the toString() method is called on a null reference, a PalJ
program merely returns the string "nil". For methods not present in the Nil class, the nil singleton will throw
an exception that is converted into a java.lang.NullPointerException as expected. Details of how this
is done are in Section 12.

PalCom External Report no 54: Deliverable 40 (2.3.2) page 47

18 Debugging

The pal-vm needs to have facilities to enable the debugging of applications running on it. The features that
support transparency can also be very useful for debugging purposes. For example, being able to remotely inspect
HMAPs gives a programmer insight into the state of a program. The VM internal data that is made visible in the
HMAPs can also be used to analyse a program that is not behaving as expected.

In addition to this, the pal-vm also has the ability to generate stack dumps, showing the sequence of method calls
on the stack, with the types and contents of parameters, message receivers and local variables. The source code
line number of the position in the code corresponding to each method invocation is also shown.

The data needed to generate readable stack dumps, including variable names, bytecode-to-line number mapping
information is generated by both the pal-j and pal-st compilers. This is described in detail in Appendix F.

In addition to the reflection support and the stack dump support already implemented, the VM also needs more
conventional debugging facilities. These include the ability to do one or more of the following:

• Inspect objects and stacks.

• Pause threads, coroutines and entire processes on demand

• Pause or log the program as it encounters predetermined code or data breakpoints

• Pause or log events such as exceptions being thrown

• Step through the program one line or one byte code at a time.

• Step over method calls, pausing the thread on return

• Evaluate expressions written in source form in the debugger.

Adding these capabilities to the VM is likely to increase the size of the VM considerably. In order to keep the size
down there are several options:

1. Write the necessary code in Smalltalk or Java and only load the code if it is needed. This precludes debugging
on very small devices, where the debugging code would not fit.

2. Make two versions of the VM, one with and one without debugging support. This also has the disadvantage
that debugging is not possible on very small devices. In this case the debugging code would have to be
written in C++.

3. Divide the VM in two parts, as shown in Section 14. Most of the debugging code could probably be placed
in the reflective part where space is not so constrained. The reflective part can be written in Java.

It is our experience that writing large amounts of complex code in C++ is slower and more time consuming than
writing in Smalltalk or Java. Therefore we are likely to choose a combination of the first and third options.

PalCom External Report no 54: Deliverable 40 (2.3.2) page 48

19 Example Usages of Pal-vm

The pal-vm is used within a number of Application Prototypes within the project: In the previous WP3 Deliv-
erable 22 [23], it was described, how the VM (then known as pre-vm-c) was used in the WP8 Major Incidents
prototype called BlueBio.

Since then, the VM has been taken into use in one more prototype, and a couple more are planned for the near
future.

19.1 Use of Pal-vm In Active Surfaces

The WP11 Care Community prototype called Active Surfaces (or often just Tiles) consists of a number of water-
proof tiles able to communicate with each other on four sides using infrared (IR) communication. Each tile can be
fitted with any of a number of different surfaces (see Figure 12), with e.g. picture fragments or letters on them.

Figure 12: Active Surfaces Demonstrated at IST-Event 2006

The goal is to have mentally and/or physically handicapped children organise the tiles in games, like puzzle or
scrabble, and thus provide them with an enjoyable rehabilitation process, where they learn while having fun.

An array of LEDs along each of the four sides of the tile provides the children with simple feedback, to indicate
success as well as progress in the game being played.

19.1.1 Implementation

At the second PalCom review in 2006, a very first use of the VM within a Tile was shown, see left picture in
Figure 13.

At the heart of each tile is an embedded Linux device, UNC20 [36], that runs pal-vm, as depicted in Figure
14. This device communicates with the PalCom-designed hardware that handles the actual communication and
toggling of feedback LEDs. The right picture in Figure 13 shows the latest version of the Tile (without the lid).
This is the version used at the IST-Event 2006.

At the top of the PalCom “stack” (see Section 20) is the actual game logic, which is currently just a proof-of-
concept implementation of a puzzle game written in the PalJ language.

The game logic makes use of the PalCom communication layers (see WP4 Deliverables [24] [29]), that abstracts
away the IR communication details, which in turn is implemented as a collection of pal-st classes in the
ist.palcom.base.networking component.

PalCom External Report no 54: Deliverable 40 (2.3.2) page 49

Figure 13: Tiles with VM at PalCom Review 2 and IST Event 2006

Figure 14: Tile Overall Structure

The current implementation of the Tiles include four physical Tiles. A fifth so-called “Assembler Tile” is being
planned. This is intended to be the one, that the physicians use when configuring a new “game”, and possibly
also when inspecting the current game, e.g. using the WP6 assembly browser. The diagrams in Figure 15 show
a UML-like view of a possible Tile architecture with Assembler Tile. The entities named :HappyLocal and
:Assembler are expressed in a non-standard assembly notation.

For more information, consult the previous WP11 Deliverable [26], and upcoming WP7-12 Deliverable [31].

19.1.2 Influence on the PalCom Open Architecture

The prototype has influenced on the PalCom open architecture in a number of ways.

Firstly, the ongoing development of the tiles has lead to testing of and, indirectly, various improvements of the
architecture reference implementation; in particular the pal-vm as well as the pal-st and pal-j compilers.

The tile hardware has only very limited resources available, as far as processing power, memory and communi-
cation bandwidth is concerned. Due to this, performance improvements have been implemented on the pal-vm,
and the compilers, and considerable improvements have been achieved in this regard, c.f., Section 16.

PalCom External Report no 54: Deliverable 40 (2.3.2) page 50

Figure 15: Tile and Assembler UML

Currently work is also being carried out to minimise the amount of traffic needed in order to support the bare min-
imal requirements of the PalCom device and service discovery protocol, with various approaches being discussed;
among others a lightweight binary format as opposed to the current XML-based format, see deliverable 41 [29].

19.1.3 Placement of the Code

All available source code specific to the tiles prototype can be found in the following location of the internal
palcom-i CVS repository:

• palcom-i/developer/services/communication/active-surfaces

The contributions to the communication modules and the base component can be found in the (to-be) open source
palcom repository at these paths, respectively:

• palcom/developer/core/communication
The ist.palcom.mal component.

• palcom/developer/runtime/pal-base/src
The ist.palcom.base.networking component.

19.2 Planned Use of the VM on AXIS Cameras

A couple of AXIS network cameras [8] are used in the application prototypes. For instance in the WP7 On-Site
prototype, see Figure 16, where one such camera is in use at the PalCom exhibition at IST-Event 2006.

This (or similar) camera is planned to be further used in the WP7 prototypes, as well as in the WP8 Overview
prototype. As described in Section 21.2, the VM has been ported to run on the AXIS platform, and we thus expect
the VM used in these prototypes as they mature.

19.3 Planned Use of the VM for FROBS

The primitive mechanisms for resource accounting described in Section 13 have been specifically designed for the
FROBS system [14] experimented with in WP5. It is expected that the FROBS system will be (partially) ported to
run on pal-vm. This should not be a major task, since FROBS is written in Java, and will probably be fairly easy
to get to run using pal-j. For more information, refer to the WP5 deliverable [30].

PalCom External Report no 54: Deliverable 40 (2.3.2) page 51

Figure 16: AXIS Camera at PalCom IST 2006 Exhibition

20 Pal-vm Programming Model

The general programming model for PalCom is described in the WP2 deliverable 39 [27], Chapter 7. That chapter
also contain specific examples based on the pal-vm implementation of the PalCom Runtime Environment.

This chapter will add some more details to the “programmer’s view” of the pal-vm implementation.

20.1 Dual Execution Engine

Chapter 5 of the WP2 deliverable 39 [27] contains a figure showing the layered architecture of a given PalCom
Node. The first layer above the (optional) Operating System is named “Runtime Engine” in that figure. In the
concrete implementation of this “PalCom Stack” in the (to-be) open source CVS tree (see Section A), a dual
execution model is implemented, as detailed in Figure 17.

The essence is, that on a Desktop machine, one can choose to execute PalCom code on either the Java Virtual
Machine (JVM) or the PalCom Virtual Machine (pal-vm). The Core Libraries, Middleware Management, and
Utilities are all written in Java code, compatible with pal-j (cf. Section 17), which means that they can be
compiled with either the standard Java Compiler javac and executed on JVM, or with pal-j and executed on
the pal-vm. See Section 20.3 below for details.

20.2 Pal-vm Out-of-the-box or Developer Use

As can be seen from the code base described in Appendix A, there are two different ways to work with the
pal-vm: The developer can either use the “out-of-the-box” precompiled binaries and libraries in palcom/bin

PalCom External Report no 54: Deliverable 40 (2.3.2) page 52

Resource Mgt.

Manual & task-driven Assembly Construction

Discovery

Services

Contingency Mgt. (opt.)

Assembly Management

Introspection (H-Maps)

Process & Thread

Communication

Runtime Environment

Middleware Management

Application layer

Service Management

Core

Persistency (opt.)

Utilities

Storage (opt.)

GUI/Display (opt.)

Execution platform

Operating System (opt.)

Hardware

Runtime Components Assemblies

J-BaseJ-libsBase

Pal-VM Java VM (JVM)

JRE
or

Runtime Engine

Figure 17: Runtime Layers on one PalCom Node

and palcom/lib, i.e., pal-vm, pal-st, and pal-j. Working this way requires no other preparation than
checking out the code base, and setting the PATH to include palcom/bin.

Alternatively, the developer may work with the developer tree included in the PalCom CVS. This means that they
are using the pal-dev-* scripts included in palcom/bin/developer (e.g., pal-dev-vm, pal-dev-st,
pal-dev-j), which use the latest developer version of the tools and libraries in the CVS tree. Doing so requires
the developer to have palcom/bin/developer in their PATH, and have executed the script pal-dev-build.

Unless otherwise noted, the programming cycle for pal-vm described below assumes “out-of-the-box” use. For
“developer” use, simply use the pal-dev-* scripts instead.

20.3 Programming Cycle

For a Java programmer, a programming cycle would typically start with initial programming on a standard Java
Desktop installation, perhaps using the open source Eclipse development environment [12]. The PalCom CVS
contains a number of directories containing Eclipse projects in the form of .project files and supporting stuff,
e.g. ANT scripts with CLASSPATHs set up appropriately for JVM execution. The programmer can then run their
program from within Eclipse, and thus execute on the JVM.

The next step for the Java programmer would then be to recompile the source code using the pal-j compiler (on
the command line), and then execute the resulting component(s) on the pal-vm, cf. below. A thorough tutorial
on how to program with pal-j is available in the PalCom CVS at palcom/doc/tutorials/pal-j.

A different programming approach can be taken by programming in Smalltalk, and compiling it with the pal-st
compiler. Using this approach, the developer will typically skip the use of, e.g., Eclipse completely. They will

PalCom External Report no 54: Deliverable 40 (2.3.2) page 53

still be able to utilise the Core, Infrastructure, etc. libraries (written in Java), through the use of the language
interoperability mechanisms described in Section 11. But often, the program will directly use the (Smalltalk
based) methods found in Base. This will provide the fastest and smallest code, compared to doing it in Java, but
the resulting program will, of course, only be able to run this on the pal-vm, and not the JVM.

When ready, the program can then be executed on the pal-vm, typically first on the Desktop machine. Concretely
the outcome of the pal-j or pal-st compilation(s) will be one or more PalCom Component Files (with exten-
sion .prc), c.f., Section 6. Assuming these are placed in the current directory, the execution using pal-vm is
done from the command-line using the command

pal-vm -cp . mycomponent.prc

The -cp . argument instructs the VM to add the current directory to the component path it uses to find com-
ponents. The pal-vm in this command line is one of the scripts explained in Appendix A and it automatically
adds palcom/lib to the component path. This is the location of the precompiled components for the standard
“PalCom Stack” libraries, further explained in Appendix A. If the developer is using the “developer” approach, the
pal-dev-build script generates components into the default component path palcom/developer/dev-lib,
which is automatically added to the component path by the pal-dev-vm script.

Once the code is running on pal-vm on a Desktop machine, the developer may want to copy the components
(including necessary system components from palcom/lib or palcom/developer/dev-lib) to the em-
bedded device. Furthermore, the developer will need to build and copy the binary pal-vm for that platform. This
is done by

1. Invoking the script pal-dev-build-vmwith a cross build option for the target platform. E.g., to build the
VM for UNC20, the command is pal-dev-build-vm -t unc20. The available options are displayed
by executing pal-dev-build-vm -h.

2. Copying the binary VM to the device. The pal-dev-build script reports where the binary to copy is
placed.

20.3.1 JVM or Pal-vm?

Depending on the ultimate goals of the project, the coding cycle described above may be more or less appropriate.

Using the PalCom stack on the JVM provides (among others) the following advantages:

1. Full-featured programming environments like Eclipse, with powerful source level debugging

2. The application may make use all the powerful standard libraries, including advanced graphics

Using the PalCom stack on pal-vm, on the other hand, at the present time provides the following advantages:

1. Small devices, not just Desktop machines.

2. Support for resource monitoring

3. Dynamic languages (currently Smalltalk) as well as strongly typed (currently Java)

4. Language interoperability

5. Isolated processes on one VM

PalCom External Report no 54: Deliverable 40 (2.3.2) page 54

6. Efficient lightweight scheduling in the form of Coroutines

and later

1. VM state inspection (HMAPs)

2. Debugging support, possibly remote

If the application is only to run on the Desktop platform and does not have the need for the pal-vm specific
primitives, or needs, e.g., advanced graphics, then the developer may want to (or need to) only code for the JVM.
We recommend that development is done in Eclipse.

If, on the other hand, the application need the special things provided by pal-vm, it is, of course, optional whether
the developer wants to code it in Java in Eclipse first. One benefit from doing this, though, is that the developer
currently gets much better debugging support when running on the JVM, than when running on pal-vm. This
may, however, change, as described in Section 18.

20.4 Language Restrictions

Even though Figure 17 indicates that if one programs in Java, one can freely choose between running on the JVM
and pal-vm, this is not unrestrictedly the case. Firstly, as described in Section 17.2, the entire Java language is
not supported by the pal-j compiler, so if one uses, e.g., floating point numbers in the code running on JVM, this
will not function with pal-j/pal-vm. Furthermore, the full set of Standard Java libraries are not supported on
pal-vm – see the following section – whereas some specific PalCom primitives are only available on pal-vm,
e.g. the resource monitoring primitives described in Section 13.

20.5 Base Libraries

In Figure 17 the libraries depicted right above pal-vm and JVM, respectively, need a little extra explanation:
As noted, all libraries above the Runtime Engine layer are currently written in Java, allowing for reuse on the
two execution paths through the layers. As also explained in Appendix A, the Base library used by pal-vm (in
Appendix A referred to as pal-base), contains the basic classes like Object, Integer, Boolean, etc., but
also slightly more complex classes like CheckedArray, Process and the System class. For details on the
Base classes, refer to Appendix G.

When programming for the JVM, corresponding Java classes are available in the J-Base libraries (pal-jbase).
Analogue to this, a small subset of the standard Java libraries (called JRE in the figure) is available when running
on the pal-vm in form of the J-Libs library (in a mixture of Smalltalk and Pal-J code). When coding in Eclipse,
the CLASSPATHs of the projects are actually set up in such a way, that Eclipse checks application code against
the J-Libs libraries there. This prevents use of JRE classes not supported on pal-vm.

20.6 Components and Interfaces

The pal-vm implementation of the PalCom component model is described in Section 6; here it is emphasised
what this means from a programmer’s perspective:

As already explained above, the pal-vm, loads and executes PalCom components in the form of PRC files, e.g.
mycomponent.prc. The binary format of these PRC files is described in Appendix E, but this is mostly relevant
for compiler constructors. However, Section 6 and Appendix D describes the Palcom Component Description files,

PalCom External Report no 54: Deliverable 40 (2.3.2) page 55

which are textual files describing the contents of a given PRC file. These so-called PCS files are typically named,
e.g., mycomponent.pcs or often just Component. A PCS file can be thought of as a “compiler script” that
specifies, among other things, which classes should be included in a component, and which other components they
depend on. One PCS file can only function as a “compiler script” for source files in one language. If components
written in another language are required, they have to be compiled into separate PRC files and added as required
components in the given PCS file.

The PCS files thus list the provided and required interfaces of the component. Currently only the class names are
listed; it is being investigated whether explicit signatures for the various methods in the constituent classes should
be (optionally) declared in the PCS files too, but this is not yet possible.

See also Section 11 for a discussion of interface description annotations, which is the current way to decorate
Smalltalk code with signature type information.

20.7 Services

As defined in the Open Architecture Deliverable 39 [27] one characteristic of a Service is that it is self-contained.
Pal-vm does not have a Service concept (this is provided by the Core libraries on top of the VM). Pal-vm
instead provides processes which can be used to implement services: As described in Section 8, processes have the
characteristics of being independent from each other by not allowing object-references to one process in another
process.

This characteristic of processes is enforced by the structure of the System classes and VM primitives, and cur-
rently there is no need for the compilers or VM to do extra checking to ensure this.

The Base libraries also provide the System>>startProcess and System>>startProcessByPath: path
methods, that can be used to launch services dynamically, if written using processes.

Cooperation of services residing either in different processes, in different VMs on a single node, or on different
nodes will be using the communication protocols defined in Deliverable 41 [29].

It is of course also possible to program more than one service in a single process, if the “self-contained” charac-
teristic is not interpreted as mandating complete separation. For services that cooperate significantly with other
services this may be the easiest approach. The services that are together in one process will, however, not be safe
from each other in the sense that:

• a fault in one service could crash another service running in the same process.

• for migration of services (cf. Section 15.1) between nodes it is likely that all the services in one process will
have to be migrated together as a unit

PalCom External Report no 54: Deliverable 40 (2.3.2) page 56

21 Platforms and Dependencies

Currently pal-vm can be used on the following platforms:

1. Intel based Linux (Desktop)

2. ARM-9 based Linux (BlueGiga Router [9])

3. ARM-7 based Linux (UNC20 Board [36], AXIS Network Camera [8])

4. Intel based Windows XP with Cygwin [10] (Desktop)

5. PowerPC based Mac OS X 10.4 (Desktop)

6. Intel based Mac OS X 10.4 (Desktop)

Planned next platforms include

1. ARM based Windows Mobile 2003 (PDA)

21.1 Operating System Dependency?

From the start of the project, it was argued, that for very small devices it should be considered to run on ma-
chines without a traditional operating system (OS), i.e. on the “bare metal”, see, e.g., WP3 Deliverable 22 [23,
section 4.2], WP2 Deliverable 39 [27, section 5, architecture layers figure]. This was also inspired by the OSVM
platform [2], which supported running without a traditional operating system.

As noted in Section 16.1, there is nothing in the general design of pal-vm, the precludes such a realisation. In
the current implementation of pal-vm, however, the existence of an operating system is assumed a few places: In
Section 9 it is mentioned that current implementation of preemptive scheduling uses an OS-level (or CPU-level)
interrupt-handler. This functionality would be provided by a periodic interrupt in the absence of an operating
system. The native futures described in Section 10.3 again rely on the existence of an OS thread to do the waiting
for the result.

However, despite these dependencies on traditional OS behaviour, it would be straight-forward (but time-consuming)
to run without a traditional OS. These dependencies are few in number and isolated to a few places in the im-
plementation, and a non-OS based implementation would typically supply similar functionality, either provided
directly by the System libraries, or by including a home-made “micro-operating-system” as part of the VM. This
was indeed the case for the OSVM platform.

21.2 Platform Dependencies

During year three of the project, the platform dependencies in the VM code have been much more isolated than be-
fore. The source code is all included in the PalCom (to-be) open source tree in palcom/developer/runtime/
pal-vm/src/VM. The platform specific files are:

PalCom External Report no 54: Deliverable 40 (2.3.2) page 57

GNUMakefile
Contains most of the platform specific settings for all platforms. As mentioned in Appendix A a major
restructuring of the code base has been completed during the third year of the project. One of the major
restructurings done within the VM sources is, that we used to use Makefiles automatically generated by
Eclipse for each platform. Although convenient with the user interface for changing platform settings, it
turned out to be too time-consuming to maintain settings for each platform individually. Especially since it
is not easy to change for other platforms, than the one you are developing on.

To overcome these difficulties, a single GNU Makefile was produced, that basically contains three sections:
A section with platform specific settings of compile time options, includes etc., a section with a common
listing of the constituent source files, and a section with make targets for the user to invoke.

This simple structure has made it much easier to add new platforms, or to change settings for all or specific
platforms. For instance the support for the Axis camera mentioned above, was added in a few hours.

Platform.hpp
Definition of interface to platform specific operations used by the VM. This includes some timing function-
ality as well as basic file I/O.

UnixPlatform.cpp
UNIX implementation of platform specific functions. Used on Linux and Mac OS X platforms.

CygwinPlatform.cpp
Cygnus Windows implementation of platform specific functions. Since Cygwin is an attempt to mimic UNIX
on Windows, the differences from UnixPlatform.cpp are very small, and mostly concern various constants
and path notation.

NativeSymLookup.cpp
This is used for looking up symbols after loading third party libraries. This is needed when a PalCom
component is loaded, that references external third party code using the Native interface, see Section 10.
This file should be split in parts corresponding to each platform, and included in the above mentioned
platform specific source files.

Threads.cpp
The implementation of threads currently assumes POSIX Threads to be available. This may not always be
the case, and as such this may need to be split out into the platform specific files.

Besides the above mentioned files, a few files use non-ANSI C++ code. Specifically the GCC [15] extensions
for computed goto, address-of labels, and asm bindings of variables to hardware registers are used. All of these
usages are, however, only for optimisation purposes, and ANSI C++ compliant code is always included as fallback
these places in the code. So even for a non-GCC compiler, this code should work as-is.

To summarise, the platform specific parts of the VM source code are quite isolated, and it should be straight-
forward to port the code to other platforms, as the need arises. As mentioned above, the next platform likely to be
considered is a Windows Mobile based PDA. The major challenge expected are is Windows specific (non-POSIX)
threads.

PalCom External Report no 54: Deliverable 40 (2.3.2) page 58

22 Open Issues

The following are a number of open issues to be dealt with in the future work in WP3:

• Two-part VM. As described in Section 14.2 we are considering a change to the VM to divide it into two
tightly connected parts; the executing part and the reflective part.

• HMAPs. As mentioned in Section 14.3 it is still an open issue how much reflective information to make
available through HMAPs and how HMAPs can be implemented in a two-part VM.

• Resource support. Some mechanisms have been proposed and implemented for low level resource manage-
ment. See Section 13 for details. It is not yet clear whether these mechanisms are sufficient or correctly
designed for allowing resource monitoring and manipulation, as needed by WP5 [25].

• Reflection. As mentioned in Section 14, some work remains in order to make the best design decisions for
the reflective mechanisms.

• Dynamic upgrade, versioning, migration. The adequacy of the simple HMAP-based model for persistence
(Section 15) has not yet been fully determined. This persistence model suggests a simple migration capabil-
ity that may or may not prove to be useful in practice. The process model (Section 8) has been designed to
ensure that processes are independent of each other, which leaves the possibility open of creating a migration
mechanism that encompasses more of the state of a running process.

• Code verification. Though security issues are outside the formal scope of the project, a practical system may
need to address issues of verifying code safety and enforcing a security policy in order to ensure system
stability in the presence of code from multiple sources. This includes formulating a policy on which code
may contain primitives.

• The benchmarks currently used to assess performance (Section 16) do not include the use of exceptions. If
it proves that exception performance is inadequate, then the exception mechanism described in Section 12
may need to be revised.

• Optimisations. As mentioned in Section 16 a number of optimisations remain to be done in pal-vm. E.g.
a multi-generation garbage collector must probably be implemented. The two-part VM design described in
Section 14.2 would allow a just-in-time (JIT) compiler to be added to the VM. This JIT could generate either
machine code, or it could generate more efficient byte codes, based on feedback from program execution.

• BETA. There exists a compiler for the BETA language that generates Palcom code, but it is not currently up
to date, and does not generate code compatible with the pal-vm. The interoperability framework (Section
11) has been designed with BETA in mind, but BETA support has not been maintained the last 12 months
and needs an update to work with the current mechanisms. Adding support for a third language is considered
important, since this will demonstrate the generality of the mechanisms.

• Separation of code for Basename Interoperability: As mentioned in Section 11.4, currently the generation
of base names from method names is hard-coded into the VM. The design allows for this functionality to be
supplied as an “add-on” library, so that additional languages in principle can be supported by adding such a
library. This has yet to be realised for the currently supported languages.

• Debugger. The design of a debugger and details of the mechanisms needed are not finalised. See Section 18.

• Native calls. An application that needs to do a lot of different native calls is awkward to program at the
moment, since arguments must be packed into an array prior to every call. It may be possible to improve this
process with better library and/or VM support.

• Scheduling. As mentioned in Section 9, the mechanisms for preemptive scheduling still have a number of
open issues.

PalCom External Report no 54: Deliverable 40 (2.3.2) page 59

• Synchronisation between Threads. Although the mechanisms for preemptive scheduling of processes and
Threads are in principle the same, cf. Section 9, the current implementation only allows for preemptive
scheduling of Processes. This is mainly due to the lack of VM-level synchronisation mechanisms between
Threads (this is not an issue between processes, since they cannot refer shared data). Thus if preemptive
scheduling between Threads is requested, synchronisation will have to be designed and implemented.

• PCS interface declarations. As mentioned in Section 20.6, it is being considered to augment the Component
Specification File descriptions to allow for interface declarations as an alternative to the IDA annotations
currently used for Smalltalk code.

• Ports. The VM must be ported to a larger variety of devices, including PDAs.

• Non-OS based implementation. As summarised in Section 21.1 the current implementations all utilise the
underlying Operating System, whereas the general design of the VM does not dictate the presence of an OS.
It is still, though, unclear how much effort will be needed, should a non-OS implementation be requested on
a given platform. Experiences from OSVM can be used to address this.

• Investigate possibility for offering palpable qualities on top of JVM, cf. Toolbox Contribution 6 listed in
the Introduction, Section 4. Even though the current implementation provides a “dual execution engine”
approach – see Section 20.1 – a number of specific mechanisms addressing palpable qualities, that are
currently supported by (or planned for) pal-vm – e.g. support for resource monitoring, dynamic languages,
language interoperability, isolated processes, VM state inspection, efficient coroutines – are not directly
offered by JVM. It remains to be investigated to what extend (some of) these can be supported on top of the
JVM using specially crafted tools and libraries.

PalCom External Report no 54: Deliverable 40 (2.3.2) page 60

23 Summary and Conclusion

The preceeding sections together with the appendices of this report show that although a number of open issues
remain, substantial progress has been made in the design and reference implementation of the Palcom Runtime
Environment:

The objectives were detailed in the introduction, below it is outlined how Task 1 and Task 2 listed on page 10
have been addressed. As described in Task 3, also on page 10, Tasks 1 and 2 together form the objectives of this
deliverable.

23.1 Task 1: Support for resource and contingency management and code base for open-
source

As was mentioned on page 10, this task involves toolbox contributions 1-4, also listed in the introduction. Progress
has been made in all of these:

1. Further specification of palpable runtime environment.
The further definition of the base class libraries is explained in Appendices A and G and a clarification of
what parts of the VM are platform dependent was given in Section 21.
With respect to Improved Virtual Machine Reference implementation & supporting libraries the improve-
ments of the process handling was described in Section 8, support for preemptive scheduling was explained
in Section 9, and exception handling was detailed in Section 12. No work has been done on improving
garbage collection, since as explained in Section 16, other performance issues turned out to be more impor-
tant. Improved garbage collection was mentioned as a still open issue in the preceeding section. As for the
other performance issues, large improvements with respect to reduced memory consumption and optimisa-
tions have been obtained, as explained in Section 16. Finally access to legacy code has been streamlined by
the introduction of the native mechanisms described in Section 10.

2. Support for Resource - and contingency management
Primitive mechanisms for the new resource monitoring were described in Section 13, and the VM exception
handling mechanisms – likely to be used by contingency management – was described in Section 12.

3. Continued support for networking
The VM no longer provides specific primitives for networking; instead the native mechanisms, described in
Section 10, for calling external libraries are now used in the core communication libraries and
ist.palcom.base.networking.

4. Support for introspection and reflection
A possible design for supporting reflection on resource constrained devices was presented in Section 14.
The HMAP mechanisms mentioned in Sections 14 and 15 are already supported to some extent in the
implementation of the VM.

Task 1 also suggests that toolbox contributions 5 and 6 are addressed, if time allows. This has been partly done:

5. Support for program construction, analysis and supervision
Most of the mechanisms described in the preceeding sections have required parallel work on the VM and
the compilers. Thus most of the improvements described are also dependent on improved Smalltalk and
PalJ compilers. Specifically the language interoperability mechanisms described in Section 11 have required
substantial changes in the compilers too.
At the same time the documentation of how to work with the construction tools has been significantly
improved, e.g. by the tutorials in palcom/doc/tutorials, mentioned in Appendix A, and further
explained in Deliverable 36 [28]. But also by the programming model explanation in this deliverable (Sec-
tion 20), and the codebase overview given in Appendix A. As mentioned in Section 18 the design and
implementation of support for program analysis and supervision is still an open issue.

PalCom External Report no 54: Deliverable 40 (2.3.2) page 61

6. Investigate possibility for offering palpable qualities on top of JVM
As mentioned in Section 20, there are some differences in possibilities when the JVM or the pal-vm
runtime execution is chosen. As summarized in the list of open issues above, it remains an open issue to
investigate to what extend (some of) the pal-vm specific mechanisms can be supported on top of the JVM.

23.2 Task 2: Further specification of runtime and improved code base for application
prototypes

The first objective of this task was to deal with issues arising with the internal use of the open source code base,
and maturing this for the IST Event 2006 exhibition. This has been an ongoing task for the entire year 3, and as
explained in Appendix A, a coherent and understandable code base has now been established. This involved a lot
of cleaning up and restructuring, as described in Appendix A.3. At the IST Event 2006, the PalCom Open Source
Dissemination Kit was not announced – for the reasons explained in WP14 Deliverable 36 [28] – but the code base
was still mature enough, that it was used in a number of the demonstrations shown, cf. Section 19.

The second objective was to provide WP2 with updates on the Runtime Environment specification. This has
taken place by mutual discussion throughout the year, e.g. informing WP2 of the dual execution engine approach
explained in Section 20 about the programming model. This deliverable – which has been produced in parallel
with WP2 Deliverable 39 [27] – also details a number of designs from the WP2 Deliverable, specifically sections
6–18, 20, 21, and all the appendices.

To repeat the beginning of this section, substantial progress has thus been demonstrated in the design and reference
implementation of the Palcom Runtime Environment.

A number of open issues still remain. As many as possible of these will be addressed in the last year of the project.

PalCom External Report no 54: Deliverable 40 (2.3.2) page 62

A Code Base

The code base for the VM and supporting tools are all in the PalCom CVS Root simply called palcom, i.e.,
the CVS tree under preparation for open source. The open source strategy is further described in WP14 Deliv-
erable 36 [28]. Appendix B of Deliverable 36 contains detailed setup instructions for the open source CVS tree.
Below only the essentials of this are repeated. Furthermore we explain some of the changes to the code base, that
have been necessary for this new CVS Root.

A.1 PalCom CVS Root

The PalCom CVS root is currently placed at

• cvs.daimi.au.dk:/users/palcom/palcom

It can be accessed through either ssh or :pserver – both methods require that you are registered as a user,
please contact palcom2-admin at ist-palcom.org if you need access.

It is also possible to access the CVS through a web interface at the address

• http://www.ist-palcom.org/cvs

(click on “Palcom Opensource CVS”). Again you will need credentials to log on, please contact palcom2-admin
at ist-palcom.org .

With the exception of the pal-beta compiler, pal-vm and all supporting tools and base libraries are part of this
CVS Root. This includes

• palcom/developer/runtime/pal-vm/
The src/VM subdirectory contains the pal-vm (C++) source code. The platform dependent files were
listed in Section 21.

• palcom/developer/runtime/pal-vm/benchmarks
Smalltalk programs used to measure the performance of the VM and compilers (see Section 16 for details).

• palcom/developer/runtime/pal-vm/tst
Smalltalk programs used as a unit test for testing the functionality of the VM and the pal-st compiler.

• palcom/developer/runtime/j-libs/
Basic libraries - written in a mixture of Smalltalk and Java source code - to be used on top of the pal-vm.
Contains a small subset of the standard Java class libraries. Mainly used to allow for execution of Java
programs and libraries on pal-vm, but can also be used from Smalltalk. See Figure 17 on page 52.

• palcom/developer/runtime/jbenchmarks/
Java programs equivalent to the Smalltalk programs in palcom/developer/runtime/pal-vm/
benchmarks used to compare the performance of programs written in Java source code, with equivalent
programs written in Smalltalk (see Section 16 for details).

• palcom/developer/runtime/jtst/
Java programs used as a unit test for testing the functionality of the VM and the pal-j compiler.

http://www.ist-palcom.org/cvs

PalCom External Report no 54: Deliverable 40 (2.3.2) page 63

• palcom/developer/runtime/pal-base/
Minimal base libraries used by programs running on pal-vm, see Figure 17 on page 52. Contains base
classes like Object, Integer, Boolean, etc., but also slightly more complex classes like CheckedArray,
Process and the System class.
Furthermore the subdirectories palcom/developer/runtime/pal-base/networking/ and
palcom/developer/runtime/pal-base/storage/ contains classes supporting networking and
(very simple) disk-based storage.
See Appendix G for a listing of the base classes.

• palcom/developer/runtime/pal-jbase/
Java library corresponding to pal-base to be used when running a (Java) PalCom program on the JVM
platform. See Figure 17 on page 52.

• palcom/developer/tools/bytecode/pal-asm/
The (Java) source code of the bytecode assembler.

• palcom/developer/tools/bytecode/pal-dis/
The (Java) source code of the bytecode disassembler.

• palcom/developer/tools/bytecode/pal-bytecodes/
Common bytecode (Java) libraries used by the bytecode assembler, disassembler, and the Smalltalk compiler.

• palcom/developer/tools/compilers/pal-j/
The (Java) source code for the PalCom Java subset (PalJ) compiler. It contains two main subdirectories:
One for a generic Java 1.4 frontend, and one for a backend producing pal-vm bytecodes. Both of these
are written using the JastAdd [37] Java based attribute grammar system. The Java frontend is a copy from
another project, whereas the backend is developed in PalCom. For more about the pal-j compiler, and the
Java subset, it supports, refer to Section 17.

• palcom/developer/tools/compilers/pal-st/
The (Java) source code of the PalCom Smalltalk compiler. The frontend of this compiler dates back to an
older project called SOM [4], and its successor called POMP [3][33], whereas the PalCom bytecode backend
is developed in PalCom. For more about the pal-st compiler, and the Smalltalk variant, it implements,
refer to Section 17.

The pal-beta compiler is not under the PalCom CVS, but is included in the source for the BETA system. A
binary distribution is available under the PalCom BSCW, though, at the address

• http://bscw.ist-palcom.org/Workpackages/WP03/PAL-VM/PRE-BETA

Notice, that the pal-beta compiler is currently not compatible with the latest pal-vm.

A.2 Scripts

To ease the execution of the various tools in the code base, as well as the building of the code base (for developers),
a number of command line scripts are available.
The use of these is described in palcom/doc/setup/Command-line-tools.txt but the essential part is:

• The scripts in palcom/bin/ use precompiled, binary distributed tools in palcom/bin/ and palcom/lib/
and as such are ready to use “out of the box”, when you have checked out the repository, see Section 20.2.
The developer scripts include

http://bscw.ist-palcom.org/Workpackages/WP03/PAL-VM/PRE-BETA

PalCom External Report no 54: Deliverable 40 (2.3.2) page 64

pal-vm
Executes the binary distributed VM. Script command line options allows selecting between two builds
of the VM (Release, Debug).

pal-asm
Executes the binary distributed bytecode assembler

pal-dis
Executes the binary distributed bytecode disassembler

pal-st
Executes the binary distributed Smalltalk compiler

pal-j
Executes the binary distributed Palcom Java compiler

• The scripts in palcom/bin/developer use the latest build of the tools in palcom/developer, and
as such requires pal-dev-build to be run as the first thing after checkout. All developer scripts have
names that start with pal-dev-, and it is thus possible to have both the developer-, and non-developer
scripts in ones PATH. The developer scripts include

pal-dev-build
Builds the basic code base including compilers, VM, base libraries, and core libraries. Use a number
of other build scripts (not listed here) to build the various parts of the code base.

pal-dev-clean
Cleans the developer tree of all generated files

pal-dev-test
Executes various tests to ensure a consistent code base. This includes the tst and jtst unit tests,
a number of test programs for the core libraries, all the tutorials in palcom/doc/tutorials, and
(optionally) the benchmarks programs listed above.

pal-dev-export
Makes an “export” of the current binaries in the developer tree into palcom/bin and palcom/lib.

pal-dev-vm
Executes the developer version of the VM. Script command line options allows selecting between four
builds of the VM (Release, Debug, Checked, Profiling).

pal-dev-asm
Executes the developer version of the bytecode assembler

pal-dev-dis
Executes the developer version of the bytecode disassembler

pal-dev-st
Executes the developer version of the Smalltalk compiler

pal-dev-j
Executes the developer version of the Palcom Java compiler

As said, the scripts are intended to make life easier for the programmers and users. They act as wrappers for
the binaries, selecting the appropriate binaries for the current platform (in the C++ written VM case), setting
up appropriate CLASSPATHs for Java programs (e.g. the compilers) and appropriate PalCom component paths,
abstract away differences between platforms, like path notations on UNIX versus Windows, and setting default
command line options. As described in Deliverable 36 [28, Appendix B], and further in the next section, the
developer code base may be checked out in two different “topologies”: A flat structure if using Eclipse project
sets, or a tree structure if using a full CVS checkout. This further complication is also tested for, and handled by
the developer command line scripts.

PalCom External Report no 54: Deliverable 40 (2.3.2) page 65

A.3 Restructurings and Toolbox Contributions

Comparing the above overview of the current code base with the overview given in the previous WP3 Deliver-
able [23, Appendix G], it is obvious that a lot of restructuring of the code has taken place over the last year in
preparation for going open-source.

As described in WP14 Deliverable 36 [28], this restructuring has involved a number of work packages, WP3 not
the least.

The motivation for the new structure has been

1. The new structure should be easily comprehensible to external open source users and contributors.

2. It should be as easy as possible to get the system checked out or downloaded, and up and running

3. Development should work for both Eclipse users, and “command-line” users, not used to working in a
graphical development environment.

As described in [28, Appendix B], this has led to a structure, where you can check out the entire (to be) open
source development tree and the ready-to-use “out-of-the-box” binaries using just one CVS command. This work
involved collecting all the previously separate CVS repositories into one. The overall structure of this new tree is
listed in Figure 18.

palcom
doc/
lib/
bin/
developer/

developer/
runtime/
core/
tools/
services/
applications/

Figure 18: Overall structure of PalCom CVS Tree

As can be seen, the WP3 contributions listed in the preceding section spans a subtree of this.

With the aim of supporting Eclipse users better, an alternative check-out technique has also been provided for: In
Eclipse, you can specify so-called ProjectSet files, which are XML files, that specify how to check out a specific
sub-tree of a CVS Root. Since the PalCom developer tree contains a number of Eclipse projects (e.g. the compilers
and the VM are separate Eclipse projects), a number of such Eclipse ProjectSet Files are also supplied. Using these,
you get a flat directory structure in your Eclipse workspace, unlike the nested structure shown in Figure 18. As
mentioned in the above section, this dual structure support complicates the command line scripts somewhat.

As described in Section 21.2, another major restructuring that has taken place is the creation of one unified GNU-
Makefile covering all build variants of the VM for all platforms, instead of the previous automatically generated
platform specific Makefiles provided by the Eclipse CDT extension [11]. We are still programming the VM from
within Eclipse, using the CDT extension, but CDT now uses our manually crafted GNUMakefile instead of build-
ing its own.

The restructuring has also involved identifying “Toolbox Contributions” from each work package, cf. Figure 19,
which also comes from [28].

PalCom External Report no 54: Deliverable 40 (2.3.2) page 66

Figure 19: Abstract presentation of the PalCom “Toolbox”

The contributions to this Toolbox from WP3 are also listed in the “Toolbox Contributions” table on page 9 of the
Introduction of this WP3 Deliverable. As it is illustrated in Figure 19, the WP3 contributions (together with other
WP2-6 Contributions) lie in the bottom half of the middle part of this figure. This is further detailed in Figure 17
in Section 20.

PalCom External Report no 54: Deliverable 40 (2.3.2) page 67

B Bytecode Reference

This appendix describes the binary bytecodes defined for the pal-vm. Discussion of the rationale behind the
bytecode set can be found in Section 7.

In addition to the bytecodes, each method holds an array of values used by the bytecodes. These are called the
literals. The literal array is implicit in the assembler syntax (Appendix C), but explicit in the binary component
format (Appendix E).

Notation. The assembly syntax summarised for each bytecode is described in detail in Appendix C. All indexes
into the literal array are marked with an asterisk (*) below. Each of the numbers in square brackets “[]” are bytes
(8-bit values).

B.1 halt

Binary Format Assembler Format
[0] halt

Description
Stop the execution of bytecodes.

Stack Transformation
... → ...

Exceptions
None.

B.2 push local

Binary Format Assembler Format
[2] [local index] [depth] push.local <symbol> <depth:number>

Description
This byte code reads a value from a local variable slot of the current frame. The value is pushed onto the
stack. The depth parameter determines how many levels of lexical nesting the local variable can be found at.
If the depth is zero then this byte code accesses local variables in the current stack frame. If it is 1, then the
byte code accesses local variables in the method or block in which the current block is lexically nested, etc.
In order to implement this byte code, a block object must contain some form of reference to the stack frame
in which it is defined.

Stack Transformation
... → ... value

Exceptions
None.

PalCom External Report no 54: Deliverable 40 (2.3.2) page 68

B.3 push argument

Binary Format Assembler Format
[3] [argument index] [depth] push.argument <argument index:number> <depth:number>

Description
Push the argument found at the given argument index on the stack of the current frame. The depth parameter
determines how many levels of lexical nesting the argument can be found at. If the depth is zero then this
byte code accesses arguments in the current stack frame. If it is 1, then the byte code accesses arguments to
the method or block in which the current block is lexically nested, etc. In order to implement this byte code,
a block object must contain some form of reference to the stack frame in which it is defined.

Stack Transformation
... → ... value

Exceptions
None.

B.4 push field

Binary Format Assembler Format
[4] [*field name index] push.field <symbol>

Description
Get the field name from the current method using the field name index to index into the literal table, and
push the value of that field in the self object on the stack. This instruction implicitly uses the self reference.
The self reference is implicitly copied to blocks, which makes it accessible in block methods.

At lexical depth 0 (outside block methods) the self reference is identical with the 0th argument to the current
bytecode method. At other lexical depths, the 0th argument to the current bytecode method is a block object.
The virtual machine uses the class definition for the self object to map the symbolic name to an offset into
the object layout.

Stack Transformation
... → ... value

Exceptions
None.

B.5 push block

Binary Format Assembler Format
[5] [*block method index] push.block <symbol>

Description
Push a new block with a static link pointing to the current stack frame on the stack. The code for the block is
given by the block method found in the literal table using the block method index. The block can no longer
be used after the current stack frame has been destroyed by returning from it or unwinding the stack past it.

Stack Transformation
... → ... value

Exceptions
None.

PalCom External Report no 54: Deliverable 40 (2.3.2) page 69

B.6 push constant

Binary Format Assembler Format
[6] [*constant index] push.constant <argument>

Description
Push a constant to the stack from the literal table of the current method using constant index to index into
the table. Arguments can be integers, symbols, strings, immutable arrays, and immutable hash maps. The
assembler syntax for these arguments is documented in EBNF in Appendix C.

Stack Transformation
... → ... value

Exceptions
None.

B.7 push global

Binary Format Assembler Format
[7] [*global name index] push.global <symbol>

Description
Get the global name from the literal table of the current method using global name index and lookup the
name in the global dictionary; push the value of the global to the stack. If the name contains a colon (’:’)
then the text before the colon is the name of a component in which the lookup should take place. Otherwise
the lookup takes place in the current component (the component of the class in which the current method is
defined), and if the name is not found in the current component then the components on which the current
component depends are searched. If the component name is explicitly specified then it should match the
name of the current component or one of the components on which the current component depends. By
giving the name of a class as the parameter to this bytecode it can be used to look up classes in components.

Stack Transformation
... → ... value

Exceptions
Sends the message unknownGlobal to the self object if the global name is not found.

B.8 pop

Binary Format Assembler Format
[8] pop

Description
Pop and discard the top of the stack.

Stack Transformation
... value → ...

Exceptions
None.

PalCom External Report no 54: Deliverable 40 (2.3.2) page 70

B.9 pop local

Binary Format Assembler Format
[9] [local index] [depth] pop.local <local index:number> <depth:number>

Description
The inverse of push.local. Pops the top of the stack, writing the popped value into the local found at the
given index. The depth parameter determines how many levels of lexical nesting the local variable can be
found at. If the depth is zero then this byte code accesses local variables in the current stack frame. If it is
1, then the byte code accesses local variables in the method or block in which the current block is lexically
nested, etc. In order to implement this byte code, a block object must contain some form of reference to the
stack frame in which it is defined.

Stack Transformation
... value → ...

Exceptions
If depth is non-zero and the object to be popped is a block object, then the #BlockWrittenToContext
exception is thrown.

B.10 pop argument

Binary Format Assembler Format
[10] [argument index] [depth] pop.argument <argument index:number> <depth:number>

Description
The inverse of push.argument. Pop the top element from the stack and store the element at the given
argument index in the frame with the given depth.. The index may not be zero, since it is not permitted
to change the receiver during execution of a method. The depth parameter determines how many levels of
lexical nesting the argument can be found at. If the depth is zero then this byte code accesses arguments in
the current stack frame. If it is 1, then the byte code accesses arguments to the method or block in which the
current block is lexically nested, etc. In order to implement this byte code, a block object must contain some
form of reference to the stack frame in which it is defined.

Stack Transformation
... value → ...

Exceptions
If depth is non-zero and the object to be popped is a block object, then the #BlockWrittenToContext
exception is thrown.

B.11 pop field

Binary Format Assembler Format
[11] [*field name index] pop.field <symbol>

Description
The inverse of push.field. Get the field name from the current method using the field name index to
index into the literal table, pop the top element from the stack, and store that element in the field of the self
object. This instruction implicitly uses the self reference. The self reference is implicitly copied to blocks,

PalCom External Report no 54: Deliverable 40 (2.3.2) page 71

which makes it accessible in block methods. At lexical depth 0 (outside block methods) the self reference
is identical with the 0th argument to the current bytecode method. At other lexical depths, the 0th argument
to the current bytecode method is a block object. The virtual machine uses the class definition for the self
object to map the symbolic name to an offset into the object layout.

Stack Transformation
... value → ...

Exceptions
If the object to be popped is a block object, then the #BlockStoredInObject exception is thrown.

B.12 send

Binary Format Assembler Format
[12] [*message selector index] send <symbol>

Description
Get the message selector from the current method using message selector index to index into the literal table,
and send it to an object on the stack (the receiver object). The receiver object is determined by counting the
number of arguments in the message selector and using this number to index the stack. The receiving
object is below any arguments on the stack (note: this ordering of arguments results from using right-to-left
evaluation order). If there are no arguments, the receiving object is simply at the top of the stack. 2 A new
stack frame is created based on the receiver method, with a dynamic link pointing back to the current stack
frame, and evaluation continues in the new stack frame.

Stack Transformation
... arg0 arg1 · · · argn → ... result
(Including the return from the callee)

Exceptions
If the message selector is not a defined method of the receiver object, then the VM ensures that the message
doesNotUnderstand:arguments: is sent to the receiver object instead (see Appendix G for details).

B.13 super send

Binary Format Assembler Format
[13] [*message selector index] send.super <symbol>

Description
Equivalent to send, except that method lookup starts in the super class of the class that holds the current
method. The method to be called by a given occurrence of this byte code can be determined statically, since
it depends only on the selector (method name) and the class in which the current method is defined. Thus,
the method called is independent of the class of the self reference.

Stack Transformation
... arg0 arg1 · · · argn → ... result

Exceptions
See send.

2Currently, the number of arguments is determined by the number of times the character “:” occurs in the selector.

PalCom External Report no 54: Deliverable 40 (2.3.2) page 72

B.14 return local

Binary Format Assembler Format
[14] return.local

Description
Pop the top of stack (the return value) and return to the previous stack frame following the dynamic link,
then pop the arguments and push the return value.

Stack Transformation
Local stack frame: . . . returnvalue → POP FRAME
Previous stack frame (by following the dynamic link): see send bytecode.

Exceptions
If the object to be popped is a block object, then the #BlockReturned exception is thrown.

B.15 return non-local

Binary Format Assembler Format
[15] return.non local

Description
Pop the top of stack (the return value) and follow the chain of block stack frame references (starting at the
stack frame referred by the current block) to the end (the lexically enclosing method invocation). Return
from this stack frame like return local: follow the dynamic link, pop the arguments and push the return
value.

Stack Transformation
Local stack frame: . . . returnvalue → POP FRAME
Previous stack frame (by following the chain of block stack frame references to find the stack frame from
which we should return): see send bytecode.

Exceptions
If the object to be popped is a block object, then the #BlockReturned exception is thrown.

B.16 branch

Binary Format Assembler Format
[16] [bci-relative offset low byte] [bci-relative offset high byte] branch <label>

Description
The relative offset is constructed as a signed 16 bit value from the two parameter bytes that follow the branch
bytecode. Add the relative offset to the current bytecode index, and continue execution from the computed
bytecode index. Branch with offset zero branches to the branch bytecode itself.

Stack Transformation
... → ...

Exceptions
None.

PalCom External Report no 54: Deliverable 40 (2.3.2) page 73

B.17 branch.identical

Binary Format Assembler Format
[17] [bci-relative offset low byte] [bci-relative offset high byte] branch.identical <label>

Description
The relative offset is constructed as a signed 16 bit value from the two parameter bytes that follow the
branch.identical bytecode. Pop the two topmost elements of the stack, and compare them. If they point to
the same object (are identical), add the relative offset to the current bytecode index and continue execution
from the computed bytecode index. Otherwise, continue execution from the bytecode index following this
instruction. A taken branch with offset zero branches to the branch.identical bytecode itself.

Stack Transformation
... value1 value2 → ...

Exceptions
None.

B.18 branch.if.true

Binary Format Assembler Format
[20] [bci-relative offset low byte] [bci-relative offset high byte] branch.identical <label>

Description
The relative offset is constructed as a signed 16 bit value from the two parameter bytes that follow the
branch.if.true bytecode. Pop the topmost element of the stack. If it is true, the system-wide global Boolean
value, then add the relative offset to the current bytecode index and continue execution from the computed
bytecode index. Otherwise, if the topmost element is false, the system-wide global Boolean value, then
continue execution from the bytecode index following this instruction. A taken branch with offset zero
branches to the branch.if.true bytecode itself.

Stack Transformation
... value → ...

Exceptions
The symbol #IfSentToNonBoolean is thrown if the topmost element of the stack is not either true or false.

B.19 branch.if.false

Binary Format Assembler Format
[21] [bci-relative offset low byte] [bci-relative offset high byte] branch.identical <label>

Description
The relative offset is constructed as a signed 16 bit value from the two parameter bytes that follow the
branch.if.false bytecode. Pop the topmost element of the stack. If it is false, the system-wide global Boolean
value, then add the relative offset to the current bytecode index and continue execution from the computed
bytecode index. Otherwise, if the topmost element is true, the system-wide global Boolean value, then
continue execution from the bytecode index following this instruction. A taken branch with offset zero
branches to the branch.if.true bytecode itself.

Stack Transformation
... value → ...

Exceptions
The symbol #IfSentToNonBoolean is thrown if the topmost element of the stack is not either true or false.

PalCom External Report no 54: Deliverable 40 (2.3.2) page 74

B.20 swap

Binary Format Assembler Format
[18] swap

Description
Swap the order of the two topmost elements of the stack

Stack Transformation
... value1 value2 → ... value2 value1

Exceptions
None.

B.21 dup

Binary Format Assembler Format
[1] dup

Description
Duplicate the top value on the stack

Stack Transformation
... value1 → ... value1 value1

Exceptions
None.

B.22 call

Binary Format Assembler Format
[19] [primitive name index] call <name>

Description
Calls a primitive. Gets the primitive name from the current method using the primitive name index to index
into the literal table. The effect on the stack is the same for a primitive call and a non-primitive message
send. The primitive may throw an exception instead of returning conventionally.

Stack Transformation
... arg0 arg1 · · · argn → ... result
(Including the return from the callee)

Exceptions
Depends on primitive called

PalCom External Report no 54: Deliverable 40 (2.3.2) page 75

C Textual Assembler Reference

This appendix describes the pal-vm textual assembler, and the syntax for its input files.

C.1 File name convention

Pal-vm textual assembler files must have names that end with the .pra extension.

C.2 Assembly Language Syntax

The assembly language syntax is as follows, using EBNF [5].

<component> ::= (<metainfo> | <comment> | <class>)*

<metainfo> ::= .metainfo <symbol> <symbol> <newline>
<comment> ::= ; <not_newline>* <newline>

<class> ::= <classname> <supername> <instance_or_class>*
<classname> ::= .class <name> <newline>
<supername> ::= .super <name> <newline>
<instance_or_class> ::= <instance_side> | <class_side> | <instance_method>

| <class_method> | <instance_field> | <class_field>
<instance_side> ::= .instance_side <newline> { <newline> <member>* }

<newline>
<class_side> ::= .class_side <newline> { <newline> <member>* }

<newline>

<member> ::= <local_method> | <local_field>
<local_method> ::= .method <symbol> <newline> <method_body> <newline>
<instance_method> ::= .instance_method <symbol> <newline> <method_body>

<newline>
<class_method> ::= .class_method <symbol> <newline> <method_body>

<newline>
<local_field> ::= .field <symbol> <newline>
<instance_field> ::= .instance_field <symbol> <newline>
<class_field> ::= .class_field <symbol> <newline>

<method_body> ::= { <newline> <metainfo>* <method_locals>
<method_stacksize> <bytecode>* }

<method_locals> ::= .locals <number> <newline>
<method_stacksize> ::= .maxstacksize <number> <newline>
<bytecode> ::= <label>? <code> <argument>* <newline>
<code> ::= halt | dup | push.local | push.argument | push.field

| push.block | push.constant | push.global | pop
| pop.local | pop.argument | pop.field | send
| super.send | return.local | return.non.local
| branch | branch.identical | swap | call
| branch.if.true | branch.if.false

<argument> ::= <integer> | <symbol> | <string> | <array>
| <hashmap>

<integer> ::= <number> | -<number>

PalCom External Report no 54: Deliverable 40 (2.3.2) page 76

<symbol> ::= <quoted symbol> | <simple symbol>

<quoted symbol> ::= ’#’ <string>

<simple symbol> ::= ’#’ <word>

<word> ::= <alphanum>+

<words> ::= <word> (’ ’ <word>)*

<alphanum> ::= <letter> | <digit> | ’ ’

<string> ::= ’"’ (""|<anychar>)* ’"’

<label> ::= <string> ’:’

<not newline> ::= <anychar>*

<anychar> ::= <letter> | <digit> | ’ ’ | ...

<number> ::= <digit>+

<array> ::= (<argument>*)

<hashmap> ::= { ((<symbol> | <integer>) := <argument>)* }

The semantics attached to the metainfo parameters are described in Appendices E.3 and F.

The exact types and numbers of arguments that are allowed for each bytecode are documented in Appendix B.

PalCom External Report no 54: Deliverable 40 (2.3.2) page 77

D Component Specification File Format

This appendix describes the syntax of the component specification file.

D.1 File name convention

Component specification files should have names that end with the .pcs extension (for palcom component spec-
ification). This convention is not enforced by the compilers. The name Component without extension is often
used in Java applications for historical reasons.

D.2 Grammar for Component Specification File

<component> := "component" <name> <component-body>
<name> := <identifier> ("." <identifier>) *
<component-body> := "{" <feature> "}"
<feature> := <class> | <mainclass> | <requires>
<class> := "class" <name>
<mainclass> := "mainclass" <name>
<requires> := "requires" <string> "as" <name>

PalCom External Report no 54: Deliverable 40 (2.3.2) page 78

E Binary Component Layout

This appendix describes the binary format of pal-vm components.

E.1 File name convention

Pal-vm component files must have names that end with the .prc extension.

E.2 Grammar for binary components

The grammar of the binary component format is as follows, using EBNF [5].

<component> := <component marker> <version> <metainfo>
<number of classes> <class>*

<component marker> := <fixed length int = 0xCABAFDAF>
<version> := <fixed length int>
<metainfo> := <number of metainfo> <metainfo item>*
<number of metainfo>:= <int>
<metainfo item> := <string> <string>

<number of classes> := <int>

<class> := <class name> <super class name>
<metainfo> <instance side> <class side>

<class name> := <string>
<super class name> := <string>
<instance side> := <metainfo><fields and invokables>
<class side> := <metainfo><fields and invokables>

<fields and invokables> := <number of fields> <field name>*
<number of invokables> <method>*

<number of fields> := <int>
<field name> := <string>
<number of invokables> := <int>
<method> := <method signature> <metainfo>

<number of locals> <maximum stack size>
<number of literals> <literal>*
<number of bytecodes> <bytecode>*

<method signature> := <string>
<number of locals> := <int>
<maximum stack size> := <int>
<number of literals> := <int>
<number of bytecodes> := <int>
<bytecode> := <byte>

<literal> := <simple literal> | <literal string> |
<literal method> | <literal array> |
<literal hash map>

PalCom External Report no 54: Deliverable 40 (2.3.2) page 79

<simple literal> := <literal symbol> | <literal integer>

<literal method> := <literal method marker> <method>
<literal method marker> := <byte = 1>

<literal string> := <literal string marker> <string>
<literal string marker> := <byte = 3>

<literal symbol> := <literal symbol marker> <string>
<literal symbol marker> := <byte = 4>

<literal integer> := <literal integer marker> <int>
<literal integer marker> := <byte = 5>

<literal array> := <literal array marker> <array>
<literal array marker> := <byte = 7>

<literal hash map> := <literal hash map marker> <hash map>
<literal hash map marker>:= <byte = 8>

<fixed length int> := <bits 0-7> <bits 8-15> <bits 16-23> <bits 24-31>
<bits 0-7> := <byte>
<bits 8-15> := <byte>
<bits 16-23> := <byte>
<bits 24-31> := <byte>

<int> := <one byte int> | <two byte int> | <three byte int> |
<four byte int> | <five byte int>

<one byte int> := <bits 0-6>
<two byte int> := <bits 7-13> <bits 0-6>
<three byte int> := <bits 14-20> <bits 7-13> <bits 0-6>
<four byte int> := <bits 21-27> <bits 14-20> <bits 7-13> <bits 0-6>
<five byte int> := <bits 28-31> <bits 21-27> <bits 14-20> <bits 7-13>

<bits 0-6>

<fixed length int> := <bits 0-7> <bits 8-15> <bits 16-23> <bits 24-31>

<bits 0-7> := <byte>
<bits 8-15> := <byte>
<bits 16-23> := <byte>
<bits 24-31> := <byte>

<bits 0-6> := <byte <= 127>
<bits 7-13> := <byte >= 128>
<bits 14-20> := <byte >= 128>
<bits 21-27> := <byte >= 128>
<bits 28-31> := <byte >= 128>

<char> := <one byte int> | <two byte int> | <three byte int>

<string> := <number of characters> <char>*
<number of characters> := <int>

PalCom External Report no 54: Deliverable 40 (2.3.2) page 80

<array> := <number of elements> <literal>*
<number of elements> := <int>

<hash map> := <number of entries> (<simple literal> <literal>)*
<number of entries> := <int>

E.3 Metainformation

The following metainformation keys are recognised by the virtual machine.

requires : Indicates a requirement on another component. The value of this attribute is the name of a component
file. The value may optionally contain a name that the required component will be bound to in the name
space of the component. Multiple attributes are allowed per component.

process.main class : Indicates the main class used to start the process that is instantiated from this component.
The value of this attribute is the name of a class. Only the first occurrence of this attribute is used when
loading a component.

component.class : Indicates the class that the runtime component should be an instance of. This class should be
a subclass of the Component class. When a process is started that uses a component, a singleton instance
of this component class is instantiated.

component.initializer : Indicates the instance method on the component class that initialises the singleton in-
stance of the component class. This initialiser method is executed before the process main class is started.

F Reflection Data

The component format has provision for embedding reflection data. This data may be used by the runtime system,
or by the development tools or a reflection server. Reflection data that is unused is discarded by the runtime system
when the component is loaded.

Those items of reflection data that are stored as metainformation are represented as a collection of key-value pairs,
where the keys and values are in the form of strings of characters. At runtime the keys and values are symbols.
This applies both to the binary and textual formats component file formats.

F.1 Field names

The names of fields in objects are stored in the <instance side> and <class side> in the binary compo-
nent. See Appendix E. The names can be defined in the textual (assembler) format using the .field,
.instance field and .class field directives to the assembler. See Appendix C.

F.2 Local variable names

Local variable names are written into a component as metainfo on their method. See Appendix E and Appendix C
for the details of how metainfo is stored. Metainfo is in the form of key-value pairs of symbols.

In the case of arguments, the keys are in the form ”var.a1”, ”var.a2”, ”var.a3”, etc. The zeroth argument
is not explicitly named (it is normally called self or this).

In the case of local variables, the keys are in the form ”var.l0”, ”var.l1”, etc.

PalCom External Report no 54: Deliverable 40 (2.3.2) page 81

F.3 Source code files

The source code files used to generate a component are written into a component as metainfo on the component.
See Appendix E and Appendix C for the details of how metainfo is stored. Metainfo is in the form of key-value
pairs of symbols.

For the source code files they keys are in the form ”sourceFile.0”, ”sourceFile.1”, etc. The numbers in
the keys are used elsewhere in the component to refer to the files. The value in the key-value metainfo pairs is the
full path to the source file, as seen by the compiler at compile time.

F.4 Source code line numbers

Methods have a piece of metainfo with the key ”ln” that describes the source code line from which they are
generated. This information can be useful to profilers, stack dump generators and debuggers. The data is in the
value part of the key-value metainfo pair in textual form. The syntax is as follows, using EBNF [5].

<line info> ::= <line spec> (; <line spec>)*
<line spec> ::= (<line> =) ? <bytecode range>

(, <bytecode range>)*
<line> ::= (<source file number> :)? <line number>
<source file number> ::= <int>
<line number> ::= <int>
<bytecode range> ::= (<bytecode index> -)? <bytecode index>
<bytecode index> ::= <int>
<int> ::= (0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9)+

The line number information is in the form of semicolon-separated line specifications.

The line specifications are in the form of a line designation and an equals sign, followed by one or more comma
separated bytecode ranges. If the line designation and the equals sign are missing, then the line designation is taken
to be the line in the same file immediately following that of the previous line designation.

The line designation is in the form of a source file number, a colon and a line number. If the source file number
and the colon are missing, then the source file number is taken to be the same as in the previous line specification.

The bytecode ranges are in the form of a bytecode index, a dash, and another bytecode index. They are inclusive and
relative to the start of the method. They represent the positions in the byte stream (including bytecode parameters)
that correspond to the given source code lines. If the first bytecode index and the dash are missing then the start of
the bytecode range is taken to be one more than the end of the previous bytecode range.

As an example, consider a method in which bytecodes 0-4 are from source file 42, line 13. Bytecodes 5-10 are
from source file 42, line 14. Bytecodes 11-12 are from source file 42, line 15. The ”ln” metainfo entry for that
method could be coded as follows:

42:13=0-4;42:14=5-10;42:15=11-12

Equivalently, the source file number can be omitted from all line specifications but the first, since it is unchanged:

42:13=0-4;14=5-10;15=11-12

PalCom External Report no 54: Deliverable 40 (2.3.2) page 82

Equivalently, the line can be entirely omitted from all line specifications but the first, since each line is one greater
than the previous one:

42:13=0-4;5-10;11-12

Equivalently, start of each bytecode range can be omitted from all line specifications but the first, since each
bytecode range starts immediately after the previous one:

42:13=0-4;10;12

This last form is preferred where possible for space efficiency reasons.

PalCom External Report no 54: Deliverable 40 (2.3.2) page 83

G System Classes

The pal-vm runtime environment defines a base class library (BCL) with a number of general purpose classes
that can be used from any language running on the pal-vm platform. These classes define a number of standard
methods available to all pal-vm programs.

A number of primitive functions are also defined. These functions are called using a special call bytecode. See Sec-
tion 7.3 for the rationale of what is implemented as a bytecode and what is implemented as a primitive. Examples
of primitives are mathematical functions and functions for basic allocation of objects.

Below we include an overview of the ist.palcom.base library, presented in a Javadoc [13] alike manner.
To reduce the size of this document, we only include the class descriptions, and not the individual method de-
scriptions. Furthermore, only the classes contained in ist.palcom.base are described, neither the two other
components in the Base libraries ist.palcom.base.networking and ist.palcom.base.storage
nor the j-libs, j-base and core libraries. For a full documentation, consult PalCom Working Note 110 -
PalCom Javadoc [35].

G.1 CLASS Array

Array is a system class that represents an mutable sequence of objects. The index of the first element is 0. The size of an array
is fixed at creation time.

DECLARATION:

public class Array extends ist.palcom.base.ReadableArray

G.2 CLASS ArrayList

ArrayList is an array based list that supports most of the interface of Java ArrayList. The storage is automatically extended to
make room for new elements. Adding elements to the front or back takes time amortized O(1).

DECLARATION:

public class ArrayList extends ist.palcom.base.Object

G.3 CLASS Block

Block is a system class that is used to implement control structures in Smalltalk. A Block is created automatically by the
Smalltalk compiler when the Smalltalk block-syntax is used. Blocks are also used to implement exception handlers.

A block is evaluated by calling the methods value, value:, value:with:, etc.

A block may not be used after the method in which it is defined has returned. In order to enforce this rule, there are certain
restrictions on what may be done with a block. In particular, it is not permitted to store a block in an object, to return a block
from a method or to throw a block as an exception.

DECLARATION:

public class Block extends ist.palcom.base.Object

PalCom External Report no 54: Deliverable 40 (2.3.2) page 84

G.4 CLASS Block1

Block1 is a Block that takes one argument.

DECLARATION:

public class Block1 extends ist.palcom.base.Block

G.5 CLASS Block2

Block2 is a Block that takes 2 arguments.

DECLARATION:

public class Block2 extends ist.palcom.base.Block

G.6 CLASS Block3

Block3 is a Block that takes 3 arguments.

DECLARATION:

public class Block3 extends ist.palcom.base.Block

G.7 CLASS BlockMirror

There are restrictions on the operations that can be performed on Blocks. This is in order to ensure that blocks are never used
after their context has returned. Due to these restrictions, blocks cannot be placed in StackFrame objects. Instead of a block, a
BlockMirror is put in the StackFrame objects. The BlockMirror contains a Block, but the Block is not accessible and so unsafe
operations are preventer.

DECLARATION:

public class BlockMirror extends ist.palcom.base.Object

G.8 CLASS Boolean

Boolean is a system class representing a true/false value.

In Smalltalk applications, control structures are implemented using methods on the boolean class. In Java/Beta applications,
control structures are implemented directly by the compiler.

DECLARATION:

public class Boolean extends ist.palcom.base.Object

PalCom External Report no 54: Deliverable 40 (2.3.2) page 85

G.9 CLASS ByteArray

ByteArray is a system class representing arrays of byte values. The bytes are represented efficiently by the VM. The byte values
are manipulated as small Integer values when reading and writing values.

The index of the first element is 0. The size of a ByteArray is fixed at creation time.

DECLARATION:

public class ByteArray extends ist.palcom.base.Object

G.10 CLASS ByteArrayBuffer

ByteArrayBuffer is a ByteBuffer that uses a ByteArray as storage.

DECLARATION:

public class ByteArrayBuffer extends ist.palcom.base.ByteBuffer

G.11 CLASS ByteBuffer

ByteBuffer supplies a stream-like interface to manipulating byte-data. This class is an abstract superclass that has two imple-
mentations: ByteArrayBuffer and MemoryByteBuffer, that uses a ByteArray and Memory object as storage respectively.

DECLARATION:

public class ByteBuffer extends ist.palcom.base.Object

G.12 CLASS Channel

Channel is an abstract superclass for socket-like objects. Sub-classes to the Channel class can be used as parameter to the
system select function, that waits for data on one of a set of channels.

DECLARATION:

public class Channel extends ist.palcom.base.Object

G.13 CLASS CheckedArray

This class can be used to implement Java-style type checked arrays. It is subclassed by the ’Object createCheckedArrayClass’
primitive. The primitive generates a new class if one does not already exist. The new class has an instance method called type,
which returns the class or symbol-representing-interface which elements in this array must conform to.

DECLARATION:

public class CheckedArray extends ist.palcom.base.Array

PalCom External Report no 54: Deliverable 40 (2.3.2) page 86

G.14 CLASS Class

Class is a system class whose instances represents classes. Any object has a class including class-objects.

A class cannot be constructed directly - they are constructed automatically, when loading a component.

DECLARATION:

public class Class extends ist.palcom.base.Object

G.15 CLASS Coroutine

Instances of Coroutine represents independent execution sequences. A coroutine has its own stack.

DECLARATION:

public class Coroutine extends ist.palcom.base.Object

G.16 CLASS False

A singular instance, ’false’, of the False class represents the canonical false value.

DECLARATION:

public class False extends ist.palcom.base.Boolean

G.17 CLASS HashEntry

HashEntry is a system class. It is the basic building block of HashMaps.

DECLARATION:

public class HashEntry extends ist.palcom.base.ReadableHashEntry

G.18 CLASS HashIterator

HashIterator is a system class. It is obtained from the HashMap’s or ReadableHashMap’s iterator method. It is never instatiated
directly.

DECLARATION:

public class HashIterator extends ist.palcom.base.Object

PalCom External Report no 54: Deliverable 40 (2.3.2) page 87

G.19 CLASS HashKeyIterator

Iterator over the keys in a HashMap or ReadableHashMap.

DECLARATION:

public class HashKeyIterator extends ist.palcom.base.Object

G.20 CLASS HashKeySet

A set view of the keys in a HashMap or ReadableHashMap. An instance of this class is returned from the HashMap’s keySet
method, which gives access to the the keys of a HashMap as a set.

DECLARATION:

public class HashKeySet extends ist.palcom.base.Object

G.21 CLASS HashMap

HashMap is a system class that maps keys to values. The objects serving as keys are restricted to Symbol and Integer. Unlike
the superclass, ReadableHashMap, instances of HashMap are mutable.

DECLARATION:

public class HashMap extends ist.palcom.base.ReadableHashMap

G.22 CLASS HashValueIterator

Iterator over the values in a HashMap or a ReadableHashMap. Returned by the HashMap’s iterator method. Is never instanti-
ated directly by the user of a HashMap.

DECLARATION:

public class HashValueIterator extends ist.palcom.base.Object

G.23 CLASS HashValues

A collection view of the values in a HashMap or ReadableHashMap. An instance of this class is returned from the HashMaps
values method, which gives access to the HashMaps values as a Collection.

DECLARATION:

public class HashValues extends ist.palcom.base.Object

PalCom External Report no 54: Deliverable 40 (2.3.2) page 88

G.24 CLASS Integer

Integer is a system class that represents small integer values. Integer values are efficiently represented as immediate values
instead of full objects. The immediate values are tagged and therefore less than 32 bits are available for the values. Instances
of the Integer32 class are used to represent full 32 bit integers.

DECLARATION:

public class Integer extends ist.palcom.base.Object

G.25 CLASS Integer32

Integer32 is a system class whose instances represents 32 bit integer values. This class is only used for integers outside the bit
range supported by the Integer class. This class is never instantiated directly by the programmer. The VM automatically creates
Integer32 instances when needed.

DECLARATION:

public class Integer32 extends ist.palcom.base.Object

G.26 CLASS Link

Link is used by the implementation of the LinkedList class. Instances of this class represent a position in a LinkedList and
contain a reference to the successor and predecessor links as well as a reference to the List element at this position in the List.

DECLARATION:

public class Link extends ist.palcom.base.Object

G.27 CLASS LinkedList

LinkedList is a double linked list that supports the interface of both Java LinkedList and typical LinkedList datastructures in
the Smalltalk world. A LinkedList shares interface with the ArrayList class.

DECLARATION:

public class LinkedList extends ist.palcom.base.Object

G.28 CLASS Memory

Memory is a system class whose instances represents externally allocated memory using the native malloc and free functions.
The programmer must ensure that every malloc’ed Memory object is also free’ed exactly once. If a Memory object is not
free’ed, there is a memory leak, if it is free’ed more than once, there may be heap corruption that can lead to an access-violation
or similar.

Accesses to the underlying memory are bounds checked.

DECLARATION:

public class Memory extends ist.palcom.base.Object

PalCom External Report no 54: Deliverable 40 (2.3.2) page 89

G.29 CLASS MemoryByteBuffer

MemoryByteBuffer is a ByteBuffer implementation that uses a Memory object as storage. Supports manipulation of externally
allocated memory using the ByteBuffer interface.

DECLARATION:

public class MemoryByteBuffer extends ist.palcom.base.ByteBuffer

G.30 CLASS Method

Method is a system class describing the methods of classes. Instances of this class are created by the component loader, and
can not be created directly by the programmer.

DECLARATION:

public class Method extends ist.palcom.base.Object

G.31 CLASS NativeFuture

An instance of a NativeFuture represents the return value of an external call which is taking place in a different OS thread.
NativeFutures are used to implement the nativeLongRunningXxx calls in the System class. A NativeFuture is also returned
from the nativeFutureCall:with: method on the System class.

If NativeFutures are used directly rather than through the nativeLongRunningXxx calls in the System class, then it should be
noted that a NativeFuture has a backing resource, which is released the first time the value is extracted. Thus, it is important to
eventually call one of the xxxValue methods.

DECLARATION:

public class NativeFuture extends ist.palcom.base.Object

G.32 CLASS Nil

Nil is a system class that has a singular instance, ’nil’, that represents ’nothing’ or ’null’. The singular instance is used to
implement null references in PalJ.

DECLARATION:

public class Nil extends ist.palcom.base.Object

G.33 CLASS Object

Object is the system class that is a superclass of all other classes. This class defines the basic behaviour of all objects in the
system.

DECLARATION:

public class Object extends java.lang.Object

PalCom External Report no 54: Deliverable 40 (2.3.2) page 90

G.34 CLASS PersistentComponent

PersistentComponent represent a loaded component and contains classes and metainformation.

DECLARATION:

public class PersistentComponent extends ist.palcom.base.Object

G.35 CLASS Process

The process represents a running process. The process contains a collection of all components used to implement the process.
It also contains a HashMap that is used to implement per-process class variables (known as static variables in Java).

DECLARATION:

public class Process extends ist.palcom.base.Object

G.36 CLASS ReadableArray

ReadableArray is a system class that represents a read-only sequence of objects. The index of the first value is 0. It is the
superclass of the mutable class, Array, and of all Java arrays.

DECLARATION:

public class ReadableArray extends ist.palcom.base.Object

G.37 CLASS ReadableHashEntry

ReadableHashEntry is a system class. It is the basic building block of ReadableHashMaps. ReadableHashEntry is immutable,
but it has a subclass, HashEntry, which can be modified.

DECLARATION:

public class ReadableHashEntry extends ist.palcom.base.Object

G.38 CLASS ReadableHashMap

ReadableHashMap is a system class. The objects serving as keys are restricted to Symbol and Integer. This map is not writable
(see HashMap).

DECLARATION:

public class ReadableHashMap extends ist.palcom.base.Object

PalCom External Report no 54: Deliverable 40 (2.3.2) page 91

G.39 CLASS RoundRobin

RoundRobin is a simple scheduler used for scheduling processes.

DECLARATION:

public class RoundRobin extends ist.palcom.base.Object

G.40 CLASS Runner

Runner is a thread that executes the run method on a process.

DECLARATION:

public class Runner extends ist.palcom.base.Thread

G.41 CLASS StackFrame

StackFrame is a system class that represents stack frames on the execution stack of a coroutine. This class is used to manipulate
stack-traces in exception-handlers.

DECLARATION:

public class StackFrame extends ist.palcom.base.Object

G.42 CLASS String

The String class represents character string. All literals in a program is represented as instances of this class. A String is
immutable and cannot be modified.

DECLARATION:

public class String extends ist.palcom.base.Object

G.43 CLASS StringBuilder

StringBuilder is an efficient way to create String objects. A StringBuilder contains a buffer to which Strings and other objects
can be appended. The asString method returns a concatenation of the result of calling the asStrng method on all objects in the
buffer.

DECLARATION:

public class StringBuilder extends ist.palcom.base.Object

PalCom External Report no 54: Deliverable 40 (2.3.2) page 92

G.44 CLASS Symbol

Symbol is a system class that represents unique symbol values in the program. A Symbol is a canonical character String. A
String can be converted to a Symbol using the asSymbol method, and a Symbol can be converted to a String using the asString
method. In the smalltalk language a special syntax exists for creating a Symbol literal.

DECLARATION:

public class Symbol extends ist.palcom.base.Object

G.45 CLASS System

The System class contains useful global functionality. The VM contains one singular instance of the System class that is shared
between all processes. It cannot be instantiated directly.

DECLARATION:

public class System extends ist.palcom.base.Object

G.46 CLASS Thread

Thread represents an independent execution sequence that is scheduled together with other Threads in a system of Threads
within a Process.

DECLARATION:

public class Thread extends ist.palcom.base.Coroutine

G.47 CLASS True

A singular instance, ’true’, of the True class represents the canonical true value.

DECLARATION:

public class True extends ist.palcom.base.Boolean

G.48 CLASS Vector

The Vector class an array based list. Vector is an alternative implementation of ArrayList. This class will be removed in future
versions of the base library (to be replaced by the ArrayList implementation).

DECLARATION:

public class Vector extends ist.palcom.base.Object

PalCom External Report no 54: Deliverable 40 (2.3.2) page 93

References

[1] The java hotspot performance enging architecture. http://java.sun.com/products/hotspot/
whitepaper.html.

[2] Osvm object-oriented software platform. http://www.esmertec.com/solutions/M2M/OSVM/.

[3] The pomp project. http://wiki.daimi.au.dk/som/the_pomp_project.wiki.

[4] The som project. http://wiki.daimi.au.dk/som/_home.wiki.

[5] ISO/IEC 14977:1996. Information technology – Syntactic metalanguage – Extended BNF. Technical report,
ISO Standards, 1996.

[6] J.R. Andersen, L. Bak, S. Garup, K. V. Lund, T. Eskildsen, K. M. Hansen, and M. Torgersen. Design,
implementation and evaluation of the resilient smalltalk embeded platform. http://www.esug.org/
data/ESUG2004/ESUG2004-RT-Resilient.pdf.

[7] Ken Arnold, James Gosling, and David Holmes. The Java Programming Language. Addison Wesley, third
edition, 2000.

[8] Axis communications, axis 207 network camera. http://www.axis.com/products/cam_207/
index.htm.

[9] Bluegiga technologies. http://www.bluegiga.com.

[10] Cygwin: Gnu + cygnus + windows. http://www.cygwin.com.

[11] Eclipse c++ development toolkit. http://download.eclipse.org/tools/cdt/releases/
new.

[12] The eclipse project. http://eclipse.org.

[13] Lisa Friendly. The design of distributed hyperlinked programming documentation. In S. Fraı̈ssè, F. Garzotto,
T. Isakowitz, J. Nanard, and M. Nanard, editors, Proceedings of the International Workshop on Hypermedia
Design (IWHD’95), Montpellier, France, 1–2 June 1995, pages 151–173. Springer, 1995.

[14] Benoit Garbinato, Rachid Guerraoui, Jarle Hulaas, Maxime Monod, and Jesper Honig Spring. Pervasive
computing with frugal objects. In Proceedings of the IEEE 21st International Conference on Advanced
Information Networking and Applications (AINA-07), page To appear., Niagara Falls, Canada, May 2007.

[15] The gnu compiler collection. http://gcc.gnu.org.

[16] Adele Goldberg and David Robson. SmallTalk-80: The language and its Implementation. Addison Wesley,
1983.

[17] Stephan Korsholm. Transparent, scalable, efficient oo-persistence. In Proceedings of the Workshop on Object-
Oriented Technology, page 212, London, UK, 1999. Springer-Verlag. http://as15.iguw.tuwien.
ac.at/desarte/OOPersistence.pdf.

[18] Ole Lehrmann Madsen, Birger Møller-Pedersen, and Kristen Nygaard. Object-Oriented Programming in the
BETA Language. ACM Press/Addison Wesley, 1993.

[19] Pattie Maes. Concepts and experiments in computational reflection. In OOPSLA ’87: Conference proceedings
on Object-oriented programming systems, languages and applications, pages 147–155, New York, NY, USA,
1987. ACM Press.

[20] Peter Ørbæk. Programming with Hierarchical Maps. Technical Report DAIMI PB 575, Institute of Com-
puter Science, University of Aarhus, 2005. http://www.daimi.au.dk/publications/PB/575/
PB-575.pdf.

http://java.sun.com/products/hotspot/whitepaper.html
http://java.sun.com/products/hotspot/whitepaper.html
http://www.esmertec.com/solutions/M2M/OSVM/
http://wiki.daimi.au.dk/som/the_pomp_project.wiki
http://wiki.daimi.au.dk/som/_home.wiki
http://www.esug.org/data/ESUG2004/ESUG2004-RT-Resilient.pdf
http://www.esug.org/data/ESUG2004/ESUG2004-RT-Resilient.pdf
http://www.axis.com/products/cam_207/index.htm
http://www.axis.com/products/cam_207/index.htm
http://www.bluegiga.com
http://www.cygwin.com
http://download.eclipse.org/tools/cdt/releases/new
http://download.eclipse.org/tools/cdt/releases/new
http://eclipse.org
http://www.springer.de
http://gcc.gnu.org
http://as15.iguw.tuwien.ac.at/desarte/OOPersistence.pdf
http://as15.iguw.tuwien.ac.at/desarte/OOPersistence.pdf
http://www.daimi.au.dk/publications/PB/575/PB-575.pdf
http://www.daimi.au.dk/publications/PB/575/PB-575.pdf

PalCom External Report no 54: Deliverable 40 (2.3.2) page 94

[21] PalCom. PalCom External Report 20: Deliverable 15 (5.1): PalCom Component Model. Technical re-
port, PalCom Project IST-002057, March 2005. http://www.ist-palcom.org/publications/
review2/deliverables/Deliverable-15-[5.1]-PalCom-Component-Model.pdf.

[22] PalCom. PalCom External Report 27: Deliverable 21 (2.4.1): Specification of Programming Mod-
els and Language Support for Palpable Computing. Technical report, PalCom Project IST-002057,
August 2005. http://www.ist-palcom.org/publications/review2/deliverables/
Deliverable-21-[2.4.1]-programming-models-and-language-support.pdf.

[23] PalCom. PalCom External Report 28: Deliverable 22 (2.3.1): Specification of Virtual Ma-
chine and Reference Implementation on selected Embedded Device(s). Description of use
of VM in Application Prototypes. Technical report, PalCom Project IST-002057, October
2005. http://www.ist-palcom.org/publications/review2/deliverables/
Deliverable-22-[2.3.1]-virtual-machine.pdf.

[24] PalCom. PalCom External Report 29: Deliverable 23 (2.4.2): Specification of Component & Com-
munication model. Technical report, PalCom Project IST-002057, October 2005. http://www.
ist-palcom.org/publications/review2/deliverables/Deliverable-23-[2.4.2]
-component-communication-model.pdf.

[25] PalCom. PalCom External Report 32: Deliverable 24 (2.5.1): Design Issues for Resource Awareness
and Management. Technical report, PalCom Project IST-002057, October 2005. http://www.
ist-palcom.org/publications/review2/deliverables/Deliverable-24-[2.5.1]
-resource-awareness-and-management.pdf.

[26] PalCom. PalCom External Report 38: Deliverable 30 (2.11.1): Care Community Application
Prototypes. Technical report, PalCom Project IST-002057, November 2005. http://www.
ist-palcom.org/publications/review2/deliverables/Deliverable-30-[2.11.1]
-care-community-application-prototypes.pdf.

[27] PalCom. PalCom External Report 50: Deliverable 39 (2.2.2): Open architecture. Technical report, PalCom
Project IST-002057, December 2006. http://www.ist-palcom.org/publications/review3/
deliverables/Deliverable-39-[2.2.2]-open-architecture.pdf.

[28] PalCom. PalCom External Report 51: Deliverable 36 (2.14.1): Dissemination. Technical report, PalCom
Project IST-002057, October 2006. http://www.ist-palcom.org/publications/review3/
deliverables/Deliverable-36-[2.14.1]-dissemination.pdf.

[29] PalCom. PalCom External Report 55: Deliverable 41 (2.4.3): Components & communi-
cation. Technical report, PalCom Project IST-002057, December 2006. http://www.
ist-palcom.org/publications/review3/deliverables/Deliverable-41-[2.4.
3]-components-communication.pdf.

[30] PalCom. PalCom External Report 56: Deliverable 42 (2.5.3): Resource & contingency man-
agement. Technical report, PalCom Project IST-002057, December 2006. http://www.
ist-palcom.org/publications/review3/deliverables/Deliverable-42-[2.5.
3]-resource-contingency-management.pdf.

[31] PalCom. PalCom External Report 58: Deliverable 44 (2.7.2): WP 7-12 Prototypes status af-
ter Year 3. Technical report, PalCom Project IST-002057, January 2007. http://www.
ist-palcom.org/publications/review3/deliverables/Deliverable-44-[2.7.
2]-prototype-status-after-year3.pdf.

[32] PalCom. Palpable Computing: A new perspective on Ambient Computing. Annex I – Description of Work,
update Jan. 2007. Technical report, PalCom Project IST-002057, 2007. http://www.ist-palcom.
org/publications/review3/contract/PalComDoW6.pdf.

http://www.ist-palcom.org/publications/review2/deliverables/Deliverable-15-[5.1]-PalCom-Component-Model.pdf
http://www.ist-palcom.org/publications/review2/deliverables/Deliverable-15-[5.1]-PalCom-Component-Model.pdf
http://www.ist-palcom.org/publications/review2/deliverables/Deliverable-21-[2.4.1]-programming-models-and-language-support.pdf
http://www.ist-palcom.org/publications/review2/deliverables/Deliverable-21-[2.4.1]-programming-models-and-language-support.pdf
http://www.ist-palcom.org/publications/review2/deliverables/Deliverable-22-[2.3.1]-virtual-machine.pdf
http://www.ist-palcom.org/publications/review2/deliverables/Deliverable-22-[2.3.1]-virtual-machine.pdf
http://www.ist-palcom.org/publications/review2/deliverables/Deliverable-23-[2.4.2]-component-communication-model.pdf
http://www.ist-palcom.org/publications/review2/deliverables/Deliverable-23-[2.4.2]-component-communication-model.pdf
http://www.ist-palcom.org/publications/review2/deliverables/Deliverable-23-[2.4.2]-component-communication-model.pdf
http://www.ist-palcom.org/publications/review2/deliverables/Deliverable-24-[2.5.1]-resource-awareness-and-management.pdf
http://www.ist-palcom.org/publications/review2/deliverables/Deliverable-24-[2.5.1]-resource-awareness-and-management.pdf
http://www.ist-palcom.org/publications/review2/deliverables/Deliverable-24-[2.5.1]-resource-awareness-and-management.pdf
http://www.ist-palcom.org/publications/review2/deliverables/Deliverable-30-[2.11.1]-care-community-application-prototypes.pdf
http://www.ist-palcom.org/publications/review2/deliverables/Deliverable-30-[2.11.1]-care-community-application-prototypes.pdf
http://www.ist-palcom.org/publications/review2/deliverables/Deliverable-30-[2.11.1]-care-community-application-prototypes.pdf
http://www.ist-palcom.org/publications/review3/deliverables/Deliverable-39-[2.2.2]-open-architecture.pdf
http://www.ist-palcom.org/publications/review3/deliverables/Deliverable-39-[2.2.2]-open-architecture.pdf
http://www.ist-palcom.org/publications/review3/deliverables/Deliverable-36-[2.14.1]-dissemination.pdf
http://www.ist-palcom.org/publications/review3/deliverables/Deliverable-36-[2.14.1]-dissemination.pdf
http://www.ist-palcom.org/publications/review3/deliverables/Deliverable-41-[2.4.3]-components-communication.pdf
http://www.ist-palcom.org/publications/review3/deliverables/Deliverable-41-[2.4.3]-components-communication.pdf
http://www.ist-palcom.org/publications/review3/deliverables/Deliverable-41-[2.4.3]-components-communication.pdf
http://www.ist-palcom.org/publications/review3/deliverables/Deliverable-42-[2.5.3]-resource-contingency-management.pdf
http://www.ist-palcom.org/publications/review3/deliverables/Deliverable-42-[2.5.3]-resource-contingency-management.pdf
http://www.ist-palcom.org/publications/review3/deliverables/Deliverable-42-[2.5.3]-resource-contingency-management.pdf
http://www.ist-palcom.org/publications/review3/deliverables/Deliverable-44-[2.7.2]-prototype-status-after-year3.pdf
http://www.ist-palcom.org/publications/review3/deliverables/Deliverable-44-[2.7.2]-prototype-status-after-year3.pdf
http://www.ist-palcom.org/publications/review3/deliverables/Deliverable-44-[2.7.2]-prototype-status-after-year3.pdf
http://www.ist-palcom.org/publications/review3/contract/PalComDoW6.pdf
http://www.ist-palcom.org/publications/review3/contract/PalComDoW6.pdf

PalCom External Report no 54: Deliverable 40 (2.3.2) page 95

[33] Kari Schougaard and Ulrik P. Schultz. POMP – Pervasive Object Model Project. 9th Workshop on Mobile
Object Systems (Resource Aware Computing), ECOOP 2003, http://www.daimi.au.dk/˜kari/
publications/mos03.pdf, 2003.

[34] Ulrik Pagh Schultz, Erik Corry, and Kasper V. Lund. Virtual machines for ambient computing: A
palpable computing perspective. Technical report, July 2005. http://www.ist-palcom.org/
publications/files/OT4AMI-prevm.pdf.

[35] David Svensson. PalCom Working Note #110: PalCom Javadoc. Technical report, Institute of Computer
Science, University of Aarhus, 2006.

[36] http://www.unc20.net.

[37] Lund University. Jastadd open source java-based compiler compiler system. http://jastadd.cs.
lth.se/.

http://www.daimi.au.dk/~kari/publications/mos03.pdf
http://www.daimi.au.dk/~kari/publications/mos03.pdf
http://www.ist-palcom.org/publications/files/OT4AMI-prevm.pdf
http://www.ist-palcom.org/publications/files/OT4AMI-prevm.pdf
http://www.unc20.net
http://jastadd.cs.lth.se/
http://jastadd.cs.lth.se/

	1 Executive Summary
	2 Contributors
	3 Notational Conventions
	4 Introduction
	5 Structure of this Deliverable
	6 Pal-VM Component Model
	6.1 Component Specification Files

	7 Bytecodes
	7.1 Contexts
	7.2 Internal bytecodes
	7.3 Primitives vs. bytecodes
	7.4 Reading and writing fields of objects

	8 Processes
	9 Scheduling
	9.1 Cooperative Scheduling
	9.2 Preemptive Scheduling

	10 Native Calls
	10.1 Memory objects
	10.2 Native calls
	10.3 Native Futures

	11 Language Interoperability
	11.1 Interoperability Issues
	11.2 Code Example
	11.3 Method Name Mangling
	11.4 Basename Dispatch
	11.4.1 Type Checking with IDA

	11.5 External Class in Java
	11.6 Explicit Name-Mangling in Smalltalk
	11.6.1 Calling an Overloaded Method
	11.6.2 Overriding an Overloaded Method

	11.7 Interlanguage Inheritance

	12 Exception Mechanism
	12.1 Interoperability with exceptions

	13 Resource Awareness
	13.1 Resource API

	14 Reflection Mechanisms
	14.1 Type annotation
	14.2 A two-part VM
	14.3 HMAPs

	15 Persistence
	15.1 Migration
	15.2 Comparison with Object-based Migration and Persistence

	16 VM Performance and Size
	16.1 VM size
	16.2 VM speed

	17 Languages and Compilers
	17.1 Smalltalk/PalST differences
	17.2 Java/PalJ differences

	18 Debugging
	19 Example Usages of Pal-vm
	19.1 Use of Pal-vm In Active Surfaces
	19.1.1 Implementation
	19.1.2 Influence on the PalCom Open Architecture
	19.1.3 Placement of the Code

	19.2 Planned Use of the VM on AXIS Cameras
	19.3 Planned Use of the VM for FROBS

	20 Pal-vm Programming Model
	20.1 Dual Execution Engine
	20.2 Pal-vm Out-of-the-box or Developer Use
	20.3 Programming Cycle
	20.3.1 JVM or Pal-vm?

	20.4 Language Restrictions
	20.5 Base Libraries
	20.6 Components and Interfaces
	20.7 Services

	21 Platforms and Dependencies
	21.1 Operating System Dependency?
	21.2 Platform Dependencies

	22 Open Issues
	23 Summary and Conclusion
	23.1 Task 1: Support for resource and contingency management and code base for open-source
	23.2 Task 2: Further specification of runtime and improved code base for application prototypes

	A Code Base
	A.1 PalCom CVS Root
	A.2 Scripts
	A.3 Restructurings and Toolbox Contributions

	B Bytecode Reference
	B.1 halt
	B.2 push local
	B.3 push argument
	B.4 push field
	B.5 push block
	B.6 push constant
	B.7 push global
	B.8 pop
	B.9 pop local
	B.10 pop argument
	B.11 pop field
	B.12 send
	B.13 super send
	B.14 return local
	B.15 return non-local
	B.16 branch
	B.17 branch.identical
	B.18 branch.if.true
	B.19 branch.if.false
	B.20 swap
	B.21 dup
	B.22 call

	C Textual Assembler Reference
	C.1 File name convention
	C.2 Assembly Language Syntax

	D Component Specification File Format
	D.1 File name convention
	D.2 Grammar for Component Specification File

	E Binary Component Layout
	E.1 File name convention
	E.2 Grammar for binary components
	E.3 Metainformation

	F Reflection Data
	F.1 Field names
	F.2 Local variable names
	F.3 Source code files
	F.4 Source code line numbers

	G System Classes
	G.1 Class Array
	G.2 Class ArrayList
	G.3 Class Block
	G.4 Class Block1
	G.5 Class Block2
	G.6 Class Block3
	G.7 Class BlockMirror
	G.8 Class Boolean
	G.9 Class ByteArray
	G.10 Class ByteArrayBuffer
	G.11 Class ByteBuffer
	G.12 Class Channel
	G.13 Class CheckedArray
	G.14 Class Class
	G.15 Class Coroutine
	G.16 Class False
	G.17 Class HashEntry
	G.18 Class HashIterator
	G.19 Class HashKeyIterator
	G.20 Class HashKeySet
	G.21 Class HashMap
	G.22 Class HashValueIterator
	G.23 Class HashValues
	G.24 Class Integer
	G.25 Class Integer32
	G.26 Class Link
	G.27 Class LinkedList
	G.28 Class Memory
	G.29 Class MemoryByteBuffer
	G.30 Class Method
	G.31 Class NativeFuture
	G.32 Class Nil
	G.33 Class Object
	G.34 Class PersistentComponent
	G.35 Class Process
	G.36 Class ReadableArray
	G.37 Class ReadableHashEntry
	G.38 Class ReadableHashMap
	G.39 Class RoundRobin
	G.40 Class Runner
	G.41 Class StackFrame
	G.42 Class String
	G.43 Class StringBuilder
	G.44 Class Symbol
	G.45 Class System
	G.46 Class Thread
	G.47 Class True
	G.48 Class Vector

	References

